NCBI C++ Toolkit Book PDF Format Disclaimer:

Please note that this PDF does not offer internal hyperlinks from the table of contents to
the individual chapters, nor is any other navigation feature available in this PDF. Please
consult the online version of the book at http://www.ncbi.nlm.nih.gov/toolkit/doc/book/ if

you require these navigation features.

Revised: 23-September-2013

http://www.ncbi.nlm.nih.gov/toolkit/doc/book/

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

Book Information
Part 1 Overview
1 Introduction to the C++ Toolkit
The CORELIB Module
The ALGORITHM Module
The CGI Module
The CONNECT Module
The CTOOL Module
The DBAPI Module
The GUI Module
The HTML Module
The OBJECT MANAGER Module
The SERIAL Module
The UTIL Module
2 Getting Started
Quick Start
Example Applications
Example Libraries
Source Tree Availability
Source Tree Contents
Decide Where You Will Work (in-tree, in a subtree, out-of-tree)
Basic Installation and Configuration Considerations
Basics of Using the C++ Toolkit
Noteworthy Files
Part 2 Development Framework
3 Retrieve the Source Code (FTP and Subversion)
Public Access to the Source Code via FTP
Read-Only Access to the Source Code via Subversion
Read-Write Access to the Source Code via Subversion (NCBI only)
Source Tree Structure Summary
4 Configure, Build, and Use the Toolkit
General Information for All Platforms
UNIX
MS Windows
Mac OS X
5 Working with Makefiles
Major Makefiles
Makefile Hierarchy

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=toolkit.fm
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part1
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part2
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

Meta-Makefiles
Project Makefiles
Standard Build Targets
Makefile Macros and Makefile.mk
Example Makefiles

6 Project Creation and Management
Starting New Projects
Managing the Work Environment

7 Programming Policies and Guidelines
Choice of Language
Source Code Conventions
Doxygen Comments
C++ Guidelines
Source Code Repositories
Testing

Part 3 C++ Toolkit Library Reference

8 Portability, Core Functionality and Application Framework
Writing a Simple Application
Processing Command-Line Arguments
Namespace, Name Concatenation, and Compiler-specific Macros
Configuration Parameters
Using the CNcbiRegistry Class
Portable Stream Wrappers
Working with Diagnostic Streams (*)
Debug Macros
Handling Exceptions
Defining the Standard NCBI C++ types and their Limits
Understanding Smart Pointers: the CObject and CRef Classes
Atomic Counters
Portable mechanisms for loading DLLs
Executing Commands and Spawning Processes using the CExec class
Implementing Parallelism using Threads and Synchronization Mechanisms
Working with File and Directories Using CFile and CDir
String APIs
Portable Time Class
Template Utilities
Miscellaneous Types and Macros
Containers
Thread Pools

Miscellaneous Classes

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

Input/Output Utility Classes
Using the C++ Toolkit from a Third Party Application Framework
9 Networking and IPC
Overview
Connections
Debugging Tools and Troubleshooting
C++ Connection Streams
Service mapping API
Threaded Server Support
10 Database Access - SQL, Berkley DB
DBAPI Overview
Security
Simple Database Access via C++
Database Load-Balancing (DBLB)
NCBI DBAPI User-Layer Reference
NCBI DBAPI Driver Reference
Supported DBAPI drivers
Major Features of the BDB Library
11 CGI and Fast-CGI
Developing CGI applications
CGI Diagnostic Handling
NCBI C++ CGI Classes
An example web-based CGI application
CGI Response Codes
FCGI Redirection and Debugging C++ Toolkit CGI Programs
12 HTML
NCBI C++ HTML Classes
Generating Web Pages with the HTML classes
Supplementary Information
13 Data Serialization (ASN.1, XML)
CObject[IO]Streams
The NCBI C++ Toolkit Iterators
Processing Serial Data
User-defined type information
Runtime Object Type Information
Choice objects in the NCBI C++ Toolkit
Traversing a Data Structure
SOAP support
Test Cases [src/serial/test]

14 Biological Sequence Data Model

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

Data Model
General Use Objects
Bibliographic References
MEDLINE Data
Biological Sequences
Collections of Sequences
Sequence Locations and Identifiers
Sequence Features
Sequence Alignments
Sequence Graphs
Common ASN.1 Specifications
15 Biological Object Manager
Preface
Requirements
Use cases
Classes
Request history and conflict resolution
GenBank data loader configuration
Configuring NetCached to cache GenBank data
Use of Local Data Storage (LDS) by Object Manager
In-Memory Caching in the Object Manager and Data Loaders
How to use it
Educational Exercises

16 BLAST API
Thomas Madden, Jason Papadopoulos, Christiam Camacho, George Coulouris, and
Kevin Bealer

CLocalBlast

CRemoteBlast

The Uniform Interface

CBI2Seq

Sample Applications
17 Access to NCBI data

Object Manager: Generic API for retrieving and manipulating biological
sequence data

E-Utils: Access to Entrez Data

18 Biological Sequence Alignment
Computing pairwise global sequence alignments
Computing multiple sequence alignments
Aligning sequences in linear space

Computing spliced sequences alignments

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dataaccess
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dataaccess
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dataaccess
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dataaccess
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

Formatting computed alignments

19 GUI and Graphics
Using wxWidgets (for GUI) and OpenGL (for graphics)
Using FOX as a third party package
Using the Genome Workbench wxWidgets-based GUI framework

20 Using the Boost Unit Test Framework
Why Use the Boost Unit Test Framework?
How to Use the Boost Unit Test Framework

Part 4 Wrappers for 3rd-Party Packages

21 XmlWrapp (XML parsing and handling, XSLT, XPath)
General Information
XmlWrapp Classes
How To
Warning: Collaborative Use of XmIWrapp and libxml2
Implementation Details
FAQ

Part 5 Software

22 Debugging, Exceptions, and Error Handling
Extracting Debug Data
NCBI C++ Error Handling and Diagnostics
DebugDump: Take an Object State Snapshot
Exception Handling (*) in the NCBI C++ Toolkit

23 Distributed Computing
Getting Help
GRID Overview
Worker Nodes
Job Submitters
Implementing a Network Server
GRID Utilities

24 Applications
DATATOOL: Code Generation and Data Serialization Utility
Load Balancing
NCBI Genome Workbench
NCBI NetCache Service

25 Examples and Demos
ID1_FETCH - the ID1 and Entrez2 client
Examples from the Programming Manual

26 C Toolkit Resources for C++ Toolkit Users
Using NCBI C and C++ Toolkits together
Access to the C Toolkit source tree Using CVS

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part4
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlwrapp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part5
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_grid
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_res
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_res
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_res

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Part 6 Help and Support

27 NCBI C++ Toolkit Source Browser
LXR
Doxygen Browser

28 Software Development Tools
Section Placeholder

29 XML Authoring using Word
Writing a new chapter
Editing Existing Chapters
Editing Part Overviews

Documentation styles

30 FAQs, Useful Documentation Links, and Mailing Lists

FAQs
Useful Documentation Links
Mailing Lists
Part 7 Library and Applications Configuration

31 Library Configuration
Defining and Using Parameters
Non-Specific Parameters
Library-Specific Parameters
Application-Specific Parameters

Release Notes

Release Notes (Version 12, May 2013)
Download
Third Party Packages
Build
New Developments
Documentation
Supported Platforms (OS's and Compilers)
Last Updated

Release Notes (Version 9, May 2012)
Download
Third Party Packages
Build
New Developments
Documentation
Supported Platforms (OS's and Compilers)
Last Updated

Release Notes (Version 7, May 2011)

Download

Page 6

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part6
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_browse
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_browse
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_browse
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_devtools
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_devtools
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlauthor
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlauthor
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlauthor
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlauthor
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_xmlauthor
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part7
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part8
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_v9_2012
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

Third Party Packages
Build
New Developments
Documentation
Supported Platforms (OS's and Compilers)
Caveats and Hints
Last Updated
Release Notes (June, 2010)
Download
Third Party Packages
Build
New Developments
Documentation
Supported Platforms (OS's and Compilers)
Caveats and Hints
Last Updated
Release Notes (May, 2009)
Download
Third Party Packages
Build
New Developments
Documentation
Supported Platforms (OS's and Compilers)
Caveats and Hints
Last Updated
Release Notes (December, 2008)
Download
Build
New Developments
Documentation
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (March, 2008)
Download
Build
New Developments
Documentation
Platforms (OS's, compilers used inside NCBI)

Caveats and Hints

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7-05_2011
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_06_29_2010
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_15_2009
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_24_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

Last Updated
Release Notes (August, 2007)
Download
Build
New Developments
Documentation
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (March, 2007)
Download
Build
New Developments
Documentation
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (August, 2006)
Download
Build
New Developments
Documentation
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (April 30, 2006)
Download Location
Source Archive Contents
New Development
Documentation
Building on the MacOS
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (December 31, 2005)
Download Location
Source Archive Contents
New Development
Documentation
Building on the MacOS

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2008
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_27_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_12_2007
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_14_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_04_30_2006
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 9

Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (August, 2005)
Download Location
Source Archive Contents
New Development
Documentation
Building on MacOS
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (April, 2005)
Download Location
Source Archive Contents
New Development
FRAMEWORKS
Documentation
Building on the MacOS
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (February, 2005)
Download Location
Source Archive Contents
New Development
APPLICATIONS
Documentation
Building on the MacOS
Platforms (OS's, compilers used inside NCBI)
Caveats and Hints
Last Updated
Release Notes (November 22, 2004)
Release Notes (November 22, 2004)
Release Notes (October 2, 2004)
Release Notes (October 2, 2004)
Release Notes (July 8, 2004)
Release Notes (July 8, 2004)
Release Notes (April 16, 2004)
Release Notes (April 16, 2004)

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_03_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_05_05_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_03_09_2005
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_11_22_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_11_22_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_2_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_10_2_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7_8_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_7_8_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_april_16_2004
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_april_16_2004

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Release Notes (December 8, 2003)
Release Notes (December 8, 2003)
Release Notes (August 1, 2003)
Release Notes (August 1, 2003)
Appendix - Books and Styles

Page 10

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_08_2003
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_08_2003
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_01_2003
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_08_01_2003
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=app1.appendix1

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

Book Information

Contributing Authors

For list of contributors, see Table 1.

List of Contributors

Table 1

Full-time developers NOTE: This table is always a draft and virtually never up-to-date. Last updated: 19 Sep 2013

Special thanks to Jim Ostell

Established the biological and bibliographic data model supported by the C+
+ Toolkit. He also established the overall design, priorities, and goals for C++
Toolkit based on experience building and using the NCBI C Toolkit which
preceeded it. He continues to cheer on the list of talented software developers
and scientists below who are primarily responsible for making the C++ Toolkit
a reality and for introducing most of its nicer features.

Denis Vakatov (since Oct 1998)

Fathered the Toolkit. Coordinate all works on the portable (core, non-internal)
projects of the Toolkit, actively participate in the design (and sometimes
implementation details) of all core APIs. CONFIGURE -- orig.author and eventual
supporter. CORELIB -- orig.author of many modules and active supporter/
developer. CGI -- orig.author of "CGI Request" and "CGI Application". DBAPI --
amassive code and API revision on incorporating DBAPI into the Toolkit (with the
orig.author, V.Soussov); participate in the core (exception, diagnostic, driver
manager) code support and development. CONNECT -- orig.author of the core,
abstract connection(CONN) and portable socket(SOCK) APIs, and FW-daemon.
GUI -- helped setup the project structure, namespace and common definitions. DOC
-- "Reference Manual", "FAQ", mailing lists; snapshots, announcements.

Eugene Vasilchenko (Nov 1999 -
Feb 2001) (Aug 2002 - current)

CORELIB -- "CObject, CRef<>", multi-threading CGI -- orig.author of "CGI
Response", "Fast-CGI module" HTML -- orig.author SERIAL -- orig.author
DATATOOL -- orig.author OBJMGR -- taking over the client-side "loader" code;
revising some "user" APIs

Anton Lavrentiev (since Mar 2000)

CONNECT -- [principal developer] author of "NCBI Services": network client
API, load balancer, service mapper, dispatcher and launcher; daemons' installation,
configuration and monitoring. CTOOLS -- /principal developer] connectivity with
the NCBI C Toolkit. MSVC++ project mutli-configuration /principal developer].
Help with the internal wxWindows installations on Windows and Solaris. DOC --
documentation on all of the above Tune-up of online docs and source browsers.

Aleksey Grichenko (since Jan
2001)

CORELIB -- orig.author of the thread library SERIAL -- support and further
development DATATOOL -- support and further development OBJIMGR -- [prin
cipal developer] client-side API and implementation Incorporation of MT-safety
and "safe-static" features to all of the above

Aaron Ucko (since Aug 2001)

ID1_FETCH -- [principal developer] developed from a test/demo application to a
real client. CONFIGURE -- [principal developer]; active support and development
of the Unix building framework CORELIB -- generalized error handlers,
implemented E-mail and CGI/HTML ones UTIL,CONNECT -- blocking-queue;
multi-threaded network server API OBJECTS -- adding new functionality, QA'ing
other people's additions ALNMGR -- participated in the design PubMed (internal)
-- [principal developer] developing C++ bio-sequence indexer framework Toolkit
builds on Unix'es (internal) -- support of the building and installation framework

Andrei Gourianov (since Nov
2001)

CORELIB -- major revamp of the exception API -- structure, standartize. OBJMGR
-- client-side API, implementation, and docs. DATATOOL -- adding DTD/XML
support for the code generator

Vladimir Ivanov (since Apr 2001)

HTML -- further support and development CORELIB, UTIL -- porting of some
very platform-dependent extensions Tune-up of online docs and source browsers.
Internal wxWindows installations on Windows and Solaris.

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 2

Full-time developers NOTE: This table is always a draft and virtually never up-to-date. Last updated: 19 Sep 2013

David McElhany (since Jan 2009)

DOC -- Toolkit book

Victoria Serova (since Dec 2005)

DOC -- Toolkit book

Diane Zimmerman (2000 only)

DOC -- "Programming Manual"

Chris Lanczycki (summer 2002
only)

DOC -- major reorganization of the docs structure and appearance

Major contributors

Anton Butanaev

OBJMGR -- helped to implement ID1 loader DBAPI (in progress) -- driver for
MySQL

CIliff Clausen

OBJECTS -- ported various bio-sequence related code and utilities (from C Toolkit)

Mike DiCuccio

GBENCH -- (in progress) extendable C++ FLTK/OpenGL based GUI tool for the
retrieval, visualization, analysis, editing, and submitting of biological sequences

Jonathan Kans

OBJECTS -- helped port seq. validator (from C Toolkit). Provide MAC platform
support. Contributed code (which sometimes other people ported) for fast sequence
alphabet conversion and for translation of coding regions. Also writing the 5-
column feature table reader.

Michael Kholodov

DBAPI -- author of the "user-level" database API based on Vladimir Soussov's
portable "driver-level" API. SERIAL, DATATOOL -- provided eventual support
of (in the beginning of 2001)

Michael Kimelman

OBJMGR (in progress) -- server-side API and implementation, client-side loader
(both generic and its implementation for ID)

Vladimir Lebedev GUI_SEQ -- the first FLTK/OpenGL based GUI widgets for bio-seq visualization
Provide MAC platform support.
Peter Meric GBENCH (in progress) -- extendable C++ FLTK/OpenGL based GUI tool for the

retrieval, visualization, analysis, editing, and submitting of biological sequences
and maps (eg. MapViewer data)

Vsevolod Sandomirskiy

CORELIB, CGI -- draft-authored some application- and context- classes

Victor Sapojnikov

DBAPI -- participated in the implementation of the Microsoft DBLIB driver on
Windows; (in progress) multiplatform "network bridge" driver

Vladimir Soussov

DBAPI -- [principal developer] author of the portable DB driver API and its
implemementations for CTLIB(Sybase for Unix and Windows), DBLIB (Sybase
and Microsoft), FreeTDS and ODBC

Kamen Todorov

ALNMGR -- library to deal with bio-sequence alignments

Paul Thiessen

APP/CN3D -- Cn3D: graphical protein and alignment viewing, editing, and
annotation. ALGO/STRUCTURE/STRUCT _DP -- Block-based dynamic
programming sequence alignments. OBJTOOLS/CDDALIGNVIEW -- HTML
sequence alignment displays.

Charlie (Chunlei) Liu, Chris
Lanczycki

ALGO/STRUCTURE/CD_UTILS -- These contain numerous algorithms used by
the structure group and the CDD project.

Thomas Madden, Christiam
Camacho, George Coulouris, Ning
Ma, Vahram Avagyan, Jian Ye

BLAST -- Basic Local Alignment Search Tool

Greg Boratyn, Richa Agarwala

COBALT -- Constraint Based Alignment Tool

Book Information

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

License

Page 3

Full-time developers NOTE: This table is always a draft and virtually never up-to-date. Last updated: 19 Sep 2013

Jonathan Kans 5-column feature table reader; Defline generator function; GenBank flatfile
generator; Basic and Extended sequence cleanup; Sequence record validator;
Alignment readers; Various format readers (e.g., BED, WIGGLE)

DISCLAIMER: This (book-located) copy of the license may be out-of-date - please see the
up-to-date version at: http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/Ixt/source/doc/
public/LICENSE

CONTENTS

Public Domain Notice

Exceptions (for bundled 3rd-party code)
Copyright F.A.Q.

PUBLIC DOMAIN NOTICE

National Center for Biotechnology Information

With the exception of certain third-party files summarized below, this
software is a "United States Government Work" under the terms of the
United States Copyright Act. It was written as part of the authors'
official duties as United States Government employees and thus cannot
be copyrighted. This software is freely available to the public for
use. The National Library of Medicine and the U.S. Government have not
placed any restriction on its use or reproduction.

Although all reasonable efforts have been taken to ensure the accuracy
and reliability of the software and data, the NLM and the U.S.
Government do not and cannot warrant the performance or results that
may be obtained by using this software or data. The NLM and the U.S.
Government disclaim all warranties, express or implied, including
warranties of performance, merchantability or fitness for any
particular purpose.

Please cite the authors in any work or product based on this material.

EXCEPTIONS (in all cases excluding NCBI-written makefiles):
Location: configure

Authors: Free Software Foundation, Inc.

License: Unrestricted; at top of file

Location: config.guess, config.sub

Authors: FSF

License: Unrestricted when distributed with the Toolkit;
standalone, GNU General Public License [gpl.txt]
Location: {src,include}/dbapi/driver/ftds*/freetds
Authors: See src/dbapi/driver/ftds*/freetds/AUTHORS
License: GNU Library/Lesser General Public License
[src/dbapi/driver/ftds*/freetds/COPYING.LIB]

Location: include/dbapi/driver/odbc/unix odbc

Authors: Peter Harvey and Nick Gorham

Book Information

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/doc/public/LICENSE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/doc/public/LICENSE

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 4

License: GNU LGPL

Location: {src,include}/gui/widgets/FLU

Authors: Jason Bryan

License: GNU LGPL

Location: {src,include}/gui/widgets/F1 Table
Authors: Greg Ercolano

License: GNU LGPL

Location: include/util/bitset

Author: Anatoliy Kuznetsov

License: MIT [include/util/bitset/license.txt]
Location: {src,include}/util/compress/bzip2
Author: Julian R Seward

License: BSDish [src/util/compress/bzip2/LICENSE]
Location: {src,include}/util/compress/zlib
Authors: Jean-loup Gailly and Mark Adler

License: BSDish [include/util/compress/zlib/zlib.h]
Location: {src,include}/util/regexp

Author: Philip Hazel

License: BSDish [src/util/regexp/doc/LICENCE]
Location: {src,include}/misc/xmlwrapp

Author: Peter J Jones at al. [src/misc/xmlwrapp/AUTHORS]
License: BSDish [src/misc/xmlwrapp/LICENSE]

Copyright F.A.Q.

Q. Our product makes use of the NCBI source code, and we did changes

and additions to that version of the NCBI code to better fit it to

our needs. Can we copyright the code, and how?

A. You can copyright only the *changes* or the *additions* you made to the
NCBI source code. You should identify unambiguously those sections of

the code that were modified, e.g. by commenting any changes you made

in the code you distribute. Therefore, your license has to make clear

to users that your product is a combination of code that is public domain
within the U.S. (but may be subject to copyright by the U.S. in foreign
countries) and code that has been created or modified by you.

Q. Can we (re)license all or part of the NCBI source code?

A. No, you cannot license or relicense the source code written by NCBI
since you cannot claim any copyright in the software that was developed
at NCBI as a 'government work' and consequently is in the public domain
within the U.S.

Q. What if these copyright guidelines are not clear enough or are not
applicable to my particular case?

A. Contact us. Send your questions to 'toolbox@ncbi.nlm.nih.gov'.

Book Information

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

Part 1: Overview

Part 1 provides an introduction to the C++ Toolkit. The first chapter, "Introduction to the C+
+ Toolkit" provides a broad overview of the capabilties in the C++ Toolkit with links to other
chapters that cover topics in more detail. The second chapter "Getting Started" provides a
description of how to obtain the C++ Toolkit, the layout of the source distribution tree, and
how to get started. The following is a list of chapters in this part:

1 Introduction to the C++ Toolkit

2 Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

1: Introduction to the C++ Toolkit

Last Update: February 25, 2013.

Overview
The overview for this chapter consists of the following topics:
+ Introduction

« Chapter Outline

Introduction

One difficulty in understanding a major piece of software such as the C++ Toolkit is knowing
where to begin in understanding the overall framework or getting the 'big picture' of how all the
different components relate to each other. One approach is to dive into the details of one
component and understand it in sufficient detail to get a roadmap of the rest of the components,
and then repeat this process with the other components. Without a formal road map, this approach
can be very time consuming and it may take a long time to locate the functionality one needs.

When trying to understand a major piece of software, it would be more effective if there is a
written text that explains the overall framework without getting too lost in the details. This chapter
is written with the intent to provide you with this broader picture of the C++ Toolkit.

This chapter provides an introduction to the major components that make up the toolkit. You can
use this chapter as a roadmap for the rest of the chapters that follow.

Chapter Outline

The following is an outline of the topics presented in this chapter:
» The CORELIB Module

— Application Framework

— Argument processing

— Diagnostics
— Environment Interface

— Files and Directories

— MT Test wrappers
— Object and Ref classes

— Portability definitions

— Portable Exception Handling

— Portable Process Pipes
— Registry

— STL Use Hints

— String Manipulations
— Template Utilities

— Threads

— Time

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

¢« The ALGORITHM Module
* The CGI Module
+ The CONNECT Module

— Socket classes

— Connector and Connection

Handles

— Connection Streams
— Sendmail API
— Threaded Server

* The CTOOL Module

« The DBAPI Module

— Database User Classes

— Database Driver Architecture

+ The GUI Module
* The HTML Module

— Relationships between HTML classes

— HTML Processing
+ The OBJECT MANAGER Module
+ The SERIAL Module
* The UTIL Module

— Checksum

— Console Debug Dump Viewer

— Diff API

— Floating Point Comparison

— Lightweight Strings
— Linked Sets

— Random Number Generator

— Range Support
— Registry based DNS

— Resizing Iterator

— Rotating Log Streams
— Stream Support

— String Search

— Synchronized and blocking queue

— Thread Pools
— UTF 8 Conversion

Page 2

The CORELIB Module

The C++ Toolkit can be seen as consisting of several major pieces of code that we will refer
to as module. The core module is called, appropriately enough, CORELIB, and provides a

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

portable way to write C++ code and many useful facilities such as an application framework,
argument processing, template utilities, threads, etc. The CORELIB facilities are used by other
major modules. The rest of the sections that follow discusses the CORELIB and the other C+
+ Toolkit modules in more detail.

The following is a list of the CORELIB facilities. Note that each facility may be implemented
by a number of C++ classes spread across many files.

* Application Framework

* Argument processing

« Diagnostics
* Environment Interface

» Files and Directories

* MT Test wrappers
* Object and Ref classes

» Portability definitions

« Portable Exception Handling

« Portable Process Pipes
+ Registry
* STL Use Hints

« String Manipulations

« Template Utilities
« Threads

* Time

Abriefdescription of each of each of these facilities are presented in the subsections that follow:

Application Framework

The Application framework primarily consists of an abstract class called CNcbiApplication
which defines the high level behavior of an application. For example, every application upon
loading seems to go through a cycle of doing some initialization, then some processing, and
upon completion of processing, doing some clean up activity before exiting. These three phases
are modeled in the CNcbiApplication class as interface methods Init(), Run(), and Exit().

A new application is written by deriving a class from the CNcbiApplication base class and
writing an implementation of the Init(), Run(), and Exit() methods. Execution control to the
new application is passed by calling the application object's AppMain() method inherited from
the CNcbiApplication base class (see Figure 1). The AppMain() method is similar to the main
() method used in C/C++ programs and calls the Init(), Run(), and Exit() methods.

More details on using the CNcbiApplication class are presented in a later chapter.

Argument processing

In a C++ program, control is transferred from the command line to the program via the main
() function. The main() function is passed a count of the number of arguments (int argc), and
an array of character strings containing arguments to the program (char** argv). As long as
the argument types are simple, one can simply set up a loop to iterate through the array of
argument values and process them. However, with time applications evolve and grow more
complex. Often there is a need to do some more complex argument checking. For example,

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Diagnostics

Page 4

the application may want to enforce a check on the number and position of arguments, check
the argument type (int, string, etc.), check for constraints on argument values, check for flags,
check for arguments that follow a keyword (-logfile mylogfile.log), check for mandatory
arguments, display usage help on the arguments, etc.

To make the above tasks easier, the CORELIB provides a number of portable classes that
encapsulate the functionality of argument checking and processing. The main classes that
provide this functionality are the CArgDescriptions, CArgs, CArgValue classes.

Argument descriptions such as the expected number, type, position, mandatory and optional
attributes are setup during an application's initilization such as the application object's Init()
method (see previous section) by calling the CArgDescriptions class methods. Then, the
arguments are extracted by calling the CArgs class methods.

More details on argument processing are presented in a later chapter.

It is very useful for an application to post messages about its internal state or other diagnostic
information to a file, console or for that matter any output stream. The CORELIB provides a
portable diagnostics facility that enables an application to post diagnostic messages of various
severity levels to an output stream. This diagnostic facility is provided by the CNcbiDiag class.
You can set the diagnostic stream to the standard error output stream (NcbiErr) or to any other
output stream.

You can set the severity level of the message to Information, Warning, Error, Critical, Fatal,
or Trace. You can alter the severity level at any time during the use of the diagnostic stream.

More details on diagnostic streams and processing of diagnostic messages are presented in
later chapters.

Environment Interface

An application can read the environment variable settings (such as PATH) that are in affect
when the application is run. CORELIB defines a portable CNcbiEnvironment class that stores
the environment variable settings and provides applications with methods to get the
environment variable values.

More details on the environment interface are presented in a later chapter.

Files and Directories

An application may need access to information about a file or directory. The CORELIB
provides a number of portable classes to model a system file and directory. Some of the
important classes are CFile for modeling a file, CDir for modeling a directory, and
CMemoryFile for memory mapped file.

For example, if you create a CFile object corresponding to a system file, you can get the file's
attribute settings such as file size, permission settings, or check the existence of a file. You can
get the directory where the file is located, the base name of the file, and the file's extension.
There are also a number of useful functions that are made available through these classes to
parse a file path or build a file path from the component parts such as a directory, base name,
and extension.

More details on file and directory classes are presented in later chapters.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

MT Test wrappers

The CNcbiApplication class which was discussed earlier provides a framework for writing
portable applications. For writing portable multi-threaded applications, the CORELIB provides
a CThreadedApp class derived from CNcbiApplication class which provides a framework for
building multi-threaded applications.

Instead of using the Init(), Run(), Exit() methods for the CNcbiApplication class, the
CThreadedApp class defines specialized methods such as Thread Init(), Thread Run(),
Thread Exit(), Thread Destroy() for controlling thread behavior. These methods operate on a
specific thread identified by a thread index parameter.

Object and Ref classes

A major cause of errors in C/C++ programs is due to dynamic allocation of memory. Stated
simply, memory for objects allocated using the new operator must be released by a
corresponding delete operator. Failure to delete allocated memory results in memory leaks.
There may also be programming errors caused by references to objects that have never been
allocated or improperly allocated. One reason these types of problems crop up are because a
programmer may dynamically allocate memory as needed, but may not deallocate it due to
unanticipated execution paths.

The C++ standard provides the use of a template class, auto_ptr , that wraps memory
management inside constructors and destructors. Because a destructor is called for every
constructed object, memory allocation and deallocation can be kept symmetrical with respect
to each other. However, the auto_ptr does not properly handle the issue of ownership when
multiple auto pointers, point to the same object. What is needed is a reference counted smart
pointer that keeps a count of the number of pointers pointing to the same object. An object can
only be released when its reference count drops to zero.

The CORELIB implements a portable reference counted smart pointer through the CRef and
CObject classes. The CRef class provides the interface methods to access the pointer and the
CObject is used to store the object and the reference count.

More CObject classes are presented in a later chapter.

Portability definitions

To help with portability, the CORELIB uses only those C/C++ standard types that have some
guarantees about size and representation. In particular, use of long, long long, float is not
recommended for portable code.

To help with portability, integer types such as Intl, Uintl, Int2, Uint2, Int4, Uint4, Int8, Uint8
have been defined with constant limits. For example, a signed integer of two bytes size is
defined as type Int2 with a minimum size of kMin_I2 and a maximum size of kMax_12. There
are minimum and maximum limit constants defined for each of the different integer types.

More details on standard portable data types are presented in a later chapter.

Portable Exception Handling

C++ defines a structured exception handling mechanism to catch and process errors in a block
of code. When the error occurs an exception is thrown and caught by an exception handler.

The exception handler can then try to recover from the error, or process the error. In the C++
standard, there is only one exception class (std::exception), that stores a text message that can
be printed out. The information reported by the std::exception may not be enough for a complex

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

system. The CORELIB defines a portable CException class derived from std::exception class
that remedies the short comings of the standard exception class

The CORELIB defines a portable CException class derived from std::exception class. The
CException class in turn serves as a base class for many other exception classes specific to an
application area such as the CCoreException, CAppException, CArgException,
CFileException, and so on. Each of these derived classes can add facilities specific to the
application area they deal with.

These exception classes provides many useful facilities such as a unique identification for every
exception that is thrown, the location (file name and line number) where the exception occurred,
references to lower-level exceptions that have already been thrown so that a more complete
picture of the chain of exceptions is available, ability to report the exception data into an
arbitrary output channel such as a diagnostic stream, and format the message differently for
each channel.

More details on exceptions and exception handling are presented in a later chapter.

Portable Process Pipes

Registry

A pipe is a common mechanism used to establish communications between two separate
processes. The pipe serves as a communication channel between processes.

The CORELIB defines the CPipe class that provides a portable inter-process communications
facility between a parent process and its child process. The pipe is created by specifying the
command and arguments used to start the child process and specifying the type of data channels
(text or binary) that will connect the processes. Data is sent across the pipe using the CPipe
read and write methods.

N.B. The preferred way to define configuration parameters for an application is to use the
macros in the CParam class (e.g. NCBI PARAM_ DECL). More details on the CParam class
and its macros are presented in a later chapter. If the CParam class cannot be used, then the
registry may be used instead.

The settings for an application may be read from a configuration or initialization file (the
"registry"). This configuration file may define the parameters needed by the application. For
example, many Unix programs read their parameter settings from configuration files. Similarly,
Windows programs may read and store information in an internal registry database, or an
initialization file.

The CNcbiRegistry class provides a portable facility to access, modify and store runtime
information read from a configuration file. The configuration file consists of sections. A section
is defined by a section header of the form [section-header-name]. Within each section, the
parameters are defined using (name, value) pairs and represented as name=value strings. The
syntax closely resembles the ".ini' files used in Windows and also by Unix tools such as Samba.

More details on the Registry are presented in a later chapter.

STL Use Hints

To minimize naming conflicts, all NCBI code is placed in the ncbi name space. The CORELIB
defines a number of portable macros to help manage name space definitions. For example, you
can use the BEGIN_ NAME SPACE macro at the start of a section of code to place that code
in the specified name space. The END NAME SPACE macros is used to indicate the end the

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

of the name space definition. To declare the use of the NCBI namespace, the macros
USING NCBI SCOPE is used.

A number of macros have been defined to handle non-standard behavior of C++ compilers.
For example, a macro BREAK is defined, that is used to break out of a loop, instead of using
the break statement directly. This is done to handle a bug in the Sun WorkShop (pre 5.3 version)
compiler that fails to call destructors for objects created in for-loop initializers. Another
example is that some compilers (example, Sun Pro 4.2) do not understand the using namespace
std; statement. Therefore, for portable code, the using namespace statement should be
prohibited.

More details on the use of portable macros are presented in a later chapter.

String Manipulations

C++ defines the standard string class that provides operations on strings. However, compilers
may exhibit non-portable string behavior especially with regards to multi-threaded programs.
The CORELIB provides portable string manipulation facilities through the NStr class that
provides a number of class-wide functions for string manipulation.

NStr portable functions include the string-to-X and X-to-string conversion functions where X
is a data type including a pointer type, string comparisons with and without case, pattern
searches within a string, string truncation, substring replacements, string splitting and join
operations, string tokenization, etc.

Template Utilities

Threads

The C++ Template classes support a number of useful template classes for data structures such
as vectors, lists, sets, maps, and so on.

The CORELIB defines a number of useful utility template classes. Some examples are template
classes and functions for checking for equality of objects through a pointer, checking for non-
null values of pointers, getting and setting map elements, deleting all elements from a container
of pointers where the container can be a list, vector, set, multiset, map or multimap.

More details on the template utilities are presented in a later chapter.

Applications can run faster, if they are structured to exploit any inherent parallelism in the
application's code execution paths. Code execution paths in an application can be assigned to
separate threads. When the application is run on a multiprocessor system, there can be
significant improvements in performance especially when threads run in parallel on separate
processors.

The CORELIB defines a portable CThread class that can be used to provide basic thread
functionality such as thread creation, thread execution, thread termination, and thread cleanup.

To create user defined threads you need to derive your class from CThread, and override the

thread's Main() method and, and if necessary the OnExit() method for thread-specific cleanup.
Next, you create a thread object by instantiating the class you derived from CThread. Now you
are ready to launch thread execution by calling the thread's Run() method. The Run() method
starts thread execution and the thread will continue to run until it terminates. If you want the

thread to run independently of the parent thread you call the thread's Detach() method. If you
want to wait till the thread terminates, you call the thread's Join() method.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Time

Page 8

Synchronization between threads is provided through mutexes and read/write locks.

More details on threads and synchronization are presented in a later chapter.

The CTime class provides a portable interface to date and time functions. CTime can operate
with both local and UTC time, and can be used to store data and time at a particular moment
or elapsed time. The time epoch is defined as Jan 1, 1900 so you cannot use CTime for storing
timestamps before Jan 1, 1900.

The CTime class can adjust for daylight savings time. For display purposes, the time format
can be set to a variety of time formats specified by a format string. For example, "M/D/Y h:m:s"
for a timestamp of "5/6/03 14:07:09". Additional time format specifiers are defined for full
month name (B), abbreviated month name (b), nanosecond (S), timezone format (Z), full
weekday name (W) and abbreviated weekday name (w).

A class CStopWatch is also available that acts as a stop watch and measures elapsed time via
the Elapsed() method, after its Start() method is called.

More details on the CTime class are presented in a later chapter.

The ALGORITHM Module

The ALGORITHM module is a collection of rigorously defined, often computationally
intensive algorithms performed on sequences. It is divided into three groups:

« ALIGN. A set of global alignment algorithms, including generic Needleman-Wunsch,
a linear-space Hirschberg's algorithm and a spliced (cDna/mRna-to-Genomic)
alignment algorithm.

+ BLAST. Basic Local Alignment Tool code and interface.

« SEQUENCE. Various algorithms on biological sequences, including antigenic
determinant prediction, CPG-island finder, ORF finder, string matcher and others.

The CGI Module

The CGI module provides an integrated framework for writing CGI applications. It consists
of classes that implement the CGI (Common Gateway Interface). These classes are used to
retrieve and parse an HTTP request, and then compose and deliver an HTTP response.

The CGI module consists of a number of classes. The interaction between these classes is fairly
complex, and therefore, not covered in this introductory chapter. We will attempt to only
identify the major classes in this overview, and cover the details of their interaction in later
chapters. Among the more important of the CGI classes are the CCgiApplication, CCgiContext,
CCgiRequest, CCgiResponse, and CCgiCookie.

The CCgiApplication is used to define the CGI application and is derived from the
CNcbiApplication discussed eariler. You write a CGI application by deriving application class
from CCgiApplication and providing an adoption of the Init(), Run(), and Exit() methods
inherited from the CNcbiApplication class. Details on how to implement the Init(), Run() and
Exit() methods for a CGI application are provided in a later chapter.

The CCgiRequest class is defined to receive and parse the request, and the CCgiResponse class
outputs the response to an output stream.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 9

The CCgiCookie class models a cookie. A cookie is a name, value string pair that can be stored
on the user's web browser in an attempt to remember a session state. All incoming CCgiCookies
are parsed and stored by the CCgiRequest object, and the outgoing cookies are sent along with
the response by the CCgiResponse object.

The CGI application executes in a 'context' defined by the CCgiContext class. The CCgiContext
class provides a wrapper for the CCgiApplication, CCgiRequest and CCgiResponse objects
and drives the processing of input requests.

More details on CGI classes and their interactions are presented in a later chapter.

The CONNECT Module

The CONNECT module implements a variety of interfaces and classes dealing with making
connections to a network services. The core of the Connection Library is written in C which
provides a low level interface to the communication protocols. The CONNECT module
provides C++ interfaces so that the objects have diagnostic and error handling capabilities that
are consistent with the rest of the toolkit. The standard sockets (SOCK) API is implemented
on a variety of platforms such as Unix, MS-Windows, MacOS, Darwin. The CONNECT
module provides a higher level access to the SOCK API by using C++ wrapper classes.

The following is a list of topics presented in this section:
* Socket classes

* Connector and Connection Handles

* Connection Streams
* Sendmail API
» Threaded Server

Socket classes

The C++ classes that implement the socket interface are CSocket, CDatagramSocket,
CListeningSocket, and CSocketAPI. The socket defines an end point for a connection which
consists of an IP address (or host name) of the end point, port number and transport protocol
used (TCP, UDP).

The CSocket class encapsulates the descriptions of both local and remote end points. The local
end point, which is the end point on the client issuing a connection request, is defined as
parameters to the CSocket constructor. The remote end point on which the network service is
running is specified as parameters to the Connect() method for the CSocket class. The CSocket
class defines additional methods to manage the connection such as Reconnect() to reconnect
to the same end point as the Connect() method; the Shutdown() method to terminate the
connection; the Wait() method to wait on several sockets at once; the Read() and Write()
methods to read and write data via the socket; and a number of other support methods.

The CSocket is designed for connection-oriented services such as those running over the TCP
transport protocol. For connectionless, or datagram services, such as those running over the
UDP transport protocol, you must use the CDatagramSocket class. The local end point is
defined as parameters to the CDatagramSocket constructor. The remote end point is specified
as parameters to the Connect() method for the CDatagramSocket class. Unlike the case of the
connection-oriented services, this Connect() method only specifies the default destination
address, and does not restrict the source address of the incoming messages. The methods Send
() and Recv() are used to send the datagram, and the method SetBroadcast() sets the socket to
broadcast messages sent to the datagram socket. The CDatagramSocket is derived from the

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 10

CSocket class but methods such as Shutdown() and Reconnect() that apply to connection-
oriented services are not available to users of the CDatagramSocket class.

The CListeningSocket is used by server-side applications to listen for connection requests. The
CListeningSocket constructor specifies the port to listen to and the size of the connection
request queue. You can change the port that the server application listens to any time by using
the Listen() method. The Accept() method accepts the connection request, and returns a
CSocket object through which data is transferred.

The CSocketAPI is a C++ wrapper for class-wide common socket utility functions available
for sockets such as the gethostname(), gethostbyaddr(), ntoa(), aton(), and so on.

Connector and Connection Handles

The SOCK interface is a relatively low-level interface for connection services. The CONNECT
module provides a generalization of this interface to connection services using a connection
type and specialized connectors.

A connection is modeled by a connection type and a connector type. The connector type models
the end point of the connection, and the connection type, the actual connection. Together, the
connector and connection objects are used to define the following types of connections: socket,
file, http, memory, and a general service connection.

The connector is described by a connector handle, CONNECTOR. CONNECTOR is a typedef
and defined as a pointer to an internal data structure.

The connection is described by a connection handle CONN. CONN is a typedef and defined
as a pointer to an internal structure. The CONN type is used as a parameter to a number of
functions that handle the connection such as CONN_Create(), CONN_Relnit(), CONN_Read
(), CONN_ Write(), etc.

The CONNECTOR socket handle is created by a call to the SOCK _CreateConnector() function
and passed the host name to connect to, the port number on the host to connect to, and maximum
number of retries. The CONNECTOR handle is then passed as an argument to the
CONN_Create() which returns a CONNECTION handle. The CONNECTION handle is then
used with the connection functions (that have the prefix CONN) to process the connection.
The connection so created is bi-directional (full duplex) and input and output data can be
processed simultaneously.

The other connector types, file, http, memory are similar to the socket connector type. In the
case of a file connector, the connector handle is created by calling the FILE CreateConnector
() function and passed an input file and an output file. This connector could be used for both
reading and writing files, when input comes from one file, and output goes to another file. This
differs from normal file /O when a single handle is used to access only one file, but resembles
data exchange via sockets, instead. In the case of the HTTP connection, the
HTTP_CreateConnector type is called and passed a pointer to network information structure,
a pointer to a user-header consisting of HTTP tag-values, and a bitmask representing flags that
affect the HTTP response.

The general service connector is the most complex connector in the library, and can model any
type of service. It can be used for data transfer between an application and a named service.

The data can be sent via HTTP or directly as a byte stream (using SOCK directly). In the former
case it uses the HTTP connectors and in the latter the SOCK connectors. The general service

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 11

connector is used when the other connector types are not adequate for implementing the task
on hand.

More details on connector classes are presented in a later chapter.

Connection Streams

The CONNECT module provides a higher level of abstraction to connection programming in
the form of C++ connection stream classes derived from the standard iostream class. This
makes the familiar stream 1/O operators, manipulators available to the connection stream. The
main connection stream classes are the CConn_IOStream, CCon_SocketStream,
CCon_HttpStream, CCon_ServiceStream, and CCon_MemoryStream.

Figure 2 shows the relationship between the different stream classes. From this figure we can
see that CConn_IOStream is derived from the C++ iostream class and serves as a base class
for all the other connection stream classes. The CCon_IOStream allows input operations to be
tied to the output operations so that any input attempt first flushes the output queue from the
internal buffers.

The CCon_SocketStream stream models a stream of bytes in a bi-directional TCP connection
between two end points specified by a host/port pair. As the name suggests the socket stream
uses the socket interface directly. The CCon_HttpStream stream models a stream of data
between and HTTP client and an HTTP server (such as a web server). The server end of the
stream is identified by a URL of the form http://host[:port]/path[?args]. The
CCon_ServiceStream stream models data transfer with a named service that can be found via
dispatcher/load-balancing daemon and implemented as either HTTP CGI, standalone server,
or NCBI service. The CCon_MemoryStream stream models data transfer in memory similar
to the C++ strstream class.

More details on connection stream classes are presented in a later chapter.

Sendmail API

The CONNECT module provides an API that provides access to SMTP protocol. SMTP
(Simple Mail Transfer Protocol) is a standard email relaying protocol used by many popular
MTAs (Message Transfer Agents), such as sendmail, smail, etc, found on many systems. SMTP
passes (relays) email messages between hosts in the Internet all the way from sender to
recipient.

To initiate the use of the sendmail API, you must call the SendMaillnfo_Int() function that
initializes structure SSendMaillnfo, passed by a pointer. Your code then modifies the structure
to contain proper information such as that expected in a mail header (To, From, CC, BCC
fields) and other communication settings from their default values set at initialization. Then,
you can send email using the CORE_SendMail() or CORE SendMailEx() functions.

Threaded Server

The CONNECT module provides support for multithreaded servers through the
CThreadedServer class. The CThreadedServer class is an abstract class for network servers
and uses thread pools. This class maintains a pool of threads, called worker threads, to process
incoming connections. Each connection gets assigned to one of the worker threads, allowing
the server to handle multiple requests in parallel while still checking for new requests.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 12

You must derive your threaded server from the CThreadedServer class and define the Process
() method to indicate what to do with each incoming connection. The Process() method runs
asynchronously by using a separate thread for each request.

More details on threaded server classes are presented in a later chapter.

The CTOOL Module

The CTOOL module provides bridge mechanisms and conversion functions. More specifically,
the CTOOL module provides a number of useful functions such as a bridge between the NCBI
C++ Toolkit and the older C Toolkit for error handling, an ASN.1 connections stream that
builds on top of the connection stream, and an ASN converter that provides templates for
converting ASN.1-based objects between NCBI's C and C++ in-memory layouts.

The ASN.1 connections support is provides through functions CreateAsnConn() for creating
an ASN stream connection; CreateAsnConn_ServiceEx() for creating a service connection
using the service name, type and connection parameters; and CreateAsnConn_Service() which
is a specialized case of CreateAsnConn_ServiceEx() with some parameters set to zero.

The DBAPI Module

The DBAPI module supports object oriented access to databases by providing user classes that
model a database as a data source to which a connection can be made, and on which ordinary
SQL queries or stored procedure SQL queries can be issued. The results obtained can be
navigated using a result class or using the 'cursor' mechanism that is common to many
databases.

The user classes are used by a programmer to access the database. The user classes depend
upon a database driver to allow low level access to the underlying relational database
management system (RDBMS). Each type of RDBMS can be expected to have a different
driver that provides this low level hook into the database. The database drivers are architected
to provide a uniform interface to the user classes so that the database driver can be changed to
connect to a different database without affecting the program code that makes use of the user
classes. For a list of the database drivers for different database that are supported, see the
Supported DBAPI Drivers section.

The following is a list of topics presented in this section:

« Database User Classes

« Database Driver Architecture

Database User Classes

The interface to the database is provided by a number of C++ classes such as the [DataSource,
IDbConnection, IStatement, ICallableStatement, ICursor, IResultSet, IResultSetMetaData .
The user does not use these interfaces directly. Instead, the DBAPI module provides concrete
classes that implement these interface classes. The corresponding concrete classes for the above
mentioned interfaces are CDataSource, CDbConnection, CStatement, CCallableStatement,
CCursor, CResultSet, CResultSetMetaData.

Before accessing to a specific database, the user must register the driver with the
CDriverManager class which maintains the drivers registered for the application. The user does
this by using the CDriverManager class' factory method Getlnstance() to create an instance of
the CDriverManager class and registering the driver with this driver manager object. For details
on how this can be done, see the Choosing the Driver section.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 13

After the driver has been registered, the user classes can be used to access that database. There
are a number of ways this can be done, but the most common method is to call the IDataSource
factory method CreateDs() to create an instance of the data source. Next, the CreateConnection
() method for the data source is called, to return a connection object that implements the
IConnection interface. Next, the connection object's Connect() method is called with the user
name, password, server name, database name to make the connection to the database. Next,
the connection object's CreateStatement() method is called to create a statement object that
implements the IStatement interface. Next, the statement object's Execute() method is called
to execute the query. Note that additional calls to the IConnection::CreateStatement() results
in cloning the connection for each statement which means that these connections inherit the
database which was specified in the Connect() or SetDatabase() method.

Executing the statement objects' Execute() method returns the result set which is stored in the
statement object and can be accessed using the statement object's GetResultSet() method. You
can then call the statement object's HasRows() method which returns a Boolean true if there
are rows to be processed. The type of the result can be obtained by calling the
IResultSet::GetResultType() method. The IStatement::ExecuteUpdate() method is used for
SQL statements that do not return rows (UPDATE or DELETE SQL statement), in which case
the method IStatement::GetRowCount() returns the number of updated or deleted rows.

Calling the IStatement::GetResultSet() returns the rows via the result set object that implements
the IResultSet interface. The method IResultSet::Next() is used to fetch each row in the result
set and returns a false when no more fetch data is available; otherwise, it returns a true. All
column data, except BLOB data is represented by a CVariant object. The method
IResultSet::GetVariant() takes the column number as its parameter where the first column has
the start value of 1.

The CVariant class is used to describe the fields of a record which can be of any data type. The
CVariant has a set of accessory methods (GetXXX()) to extract a value of a particular type.
For example, the GetInt4(), GetByte(), GetString(), methods will extract an Int4, Byte data
value from the CVariant object. If data extraction is not possible because of incompatible types,
the CVariantException is thrown. The CVariant has a set of factory methods for creating objects
of a particular data type, such as CVariant::Biglnt() for Int8, CVariant::SmallDateTime() for
NCBI's CTime, and so on.

For sample code illustrating the above mentioned steps, see the Data Source and
Connections and Main Loop sections.

Database Driver Architecture

The driver can use two different methods to access the particular RDBMS. f RDBMS provides
a client library (CTLib) for a given computer system, then the driver utilizes this library. If
there is no client library, then the driver connects to RDBMS through a special gateway server
which is running on a computer system where such library does exist.

The database driver architecture has two major groups of the driver's objects: the RDBMS
independent objects, and the RDBMS dependent objects specific to a RDBMS. From a user's
perspective, the most important RDBMS dependent object is the driver context object. A
connection to the database is made by calling the driver context's Connect() method. All driver
contexts implement the same interface defined in the I DriverContext class.

If the application needs to connect to RDBMS libraries from different vendors, there is a
problem trying to link statically with the RDBMS libraries from different vendors. The reason
for this is that most of these libraries are written in C, and may use the same names which cause

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 14

name collisions. Therefore, the C_DriverMgr is used to overcome this problem and allow the
creation of a mixture of statically linked and dynamically loaded drivers and use them together
in one executable.

The low level connection to an RDBMS is specific to that RDBMS. To provide RDBMS
independence, the connection information is wrapped in an RDBMS independent object
CDB_Connection. The commands and the results are also wrapped in an RDBMS independent
object. The user is responsible for deleting these RDBMS independent objects because the life
spans of the RDBMS dependent and RDBMS independent objects are not necessarily the same.

Once you have the CDB_Connection object, you can use it as a factory for the different types
of command objects. The command object's Result() method can be called to get the results.
To send and to receive the data through the driver you must use the driver provided datatypes
such as CDB_BigInt, CDB_Float, CDB_SmallDateTime. These driver data types are all
derived from CDB_Object class.

More details on the database driver architecture is presented in a later chapter.

The GUI Module

The C++ Toolkit does not include its own GUI Module. Instead, Toolkit-based GUI
applications make use of third party GUI packages. Depending on the requirements, we
recommend either wxWidgets or FOX.

More details on developing GUI application in conjunction with the C++ Toolkit are presented
in a later chapter.

The HTML Module

The HTML module implements a number of HTML classes that are intended for use in CGI
and other programs. The HTML classes can be used to generate HTML code dynamically.

The HTML classes can be used to represent HTML page internally in memory as a graph. Each
HTML element or tag is represented by a node in the graph. The attributes for an HTML element
are represented as attributes in the node. A node in the graph can have other elements as
children. For example, for an HTML page, the top HTML element will be described by an
HTML node in the graph. The HTML node will have the HEAD and BODY nodes as its
children. The BODY node will have text data and other HTML nodes as its children. The graph
structure representation of an HTML page allows easy additions, deletions and modification
of the page elements.

Note that while the HTML classes can be used to represent the HTML page internally in
memory as a graph there is no provision for parsing of existing HTML pages to generate these
classes.

The following is a list of topics presented in this section:
« Relationships between HTML classes
« HTML Processing

Relationships between HTML classes

The base class for all nodes in the graph structure for an HTML document is the CNCBINode.
The CNCBINode class is derived from CObject and provides the ability to add, delete, and
modify the nodes in the graph. The ability to add and modify nodes is inherited by all the classes

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.wxwidgets.org/
http://www.fox-toolkit.org/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 15

derived from CNCBINode (see Figure 3). The classes derived from CNCBINode represent the
HTML elements on an HTML page. You can easily identify the HTML element that a class
handles from the class names such as CHTMLText, CHTMLButtonList, etc.

The text node classes CHTMLText and CHTMLPIlainText are intended to be used directly by
the user. Both CHTMLText and CHTMLPlainText are used to insert text into the generated
html, with the difference that CHTMLPIlainText class performs HTML encoding before
generation. A number of other classes such as CHTMLNode, CHTMLElement,
CHTMLOpenElement, and CHTMLListElement are base classes for the elements actually
used to construct an HTML page, such as CHTML_head, CHTML _form (see Figure 4).

The CHTMLNode class is the base class for CHTMLEIement and CHTMLOpenElement and
is used for describing the HTML elements that are found in an HTML page such as HEAD,
BODY, H1, BR, etc. The CHTMLEIlement tag describes those tags that have a close tag and
are well formed. The CHTMLOpenElement class describes tags that are often found without
the corresponding close tag such as the BR element that inserts a line break. The
CHTMLListElement class is used in lists such as the OL element.

Important classes of HTML elements used in forms to input data are the input elements such
as checkboxes, radio buttons, text fields, etc. The CHTML input class derived from the
CHTML_OpenElement class serves as the base class for a variety of input elements (see Figure
5).

More details on HTML classes and their relationships is presented in a later chapter.

HTML Processing

The HTML classes can be used to dynamically generate pages. In addition to the classes
described in the previous section, there are a number of page classes that are designed to help
with HTML processing. The page classes serve as generalized containers for collections of
other HTML components, which are mapped to the page. Figure 6 describes the important
classes in page class hierarchy.

The CHTMLBasicPage class is as a base class whose features are inherited by the CHTMLPage
derived class - it is not intended for direct usage. Through the methods of this class, you can
access or set the CgiApplication, Style, and TagMap stored in the class.

The CHTMLPage class when used with the appropriate HTML template file, can generate the
'bolier plate' web pages such as a standard corporate web page, with a corporate logo, a hook
for an application-specific logo, a top menubar of links to several databases served by a query
program, a links sidebar for application-specific links to relevant sites, a VIEW tag for an
application's web interface, a bottom menubar for help links, disclaimers, and other boiler plate
links. The template file is a simple HTML text file with named tags (<@tagname@>) which
allow the insertion of new HTML blocks into a pre-formatted page.

More details on CHTMLBasicPage, CHTMLPage and related classes is presented in a later
chapter.

The OBJECT MANAGER Module

The Object Manager module is a library of C++ classes, which facilitate access to biological
sequence data. It makes it possible to transparently download data from the GenBank database,
investigate biological sequence data structure, retrieve sequence data, descriptions and
annotations.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 16

The Object Manager has been designed to present an interface to users and to minimize their
exposure to the details of interacting with biological databases and their underlying data
structures. The Object Manager, therefore, coordinates the use of biological sequence data
objects, particularly the management of the details of loading data from different data sources.

The NCBI databases and software tools are designed around a particular model of biological
sequence data. The data model must be very flexible because the nature of this data is not yet
fully understood, and its fundamental properties and relationships are constantly being revised.
NCBI uses Abstract Syntax Notation One (ASN.1) as a formal language to describe biological
sequence data and its associated information.

The bio sequence data may be huge and downloading all of this data may not be practical or
desirable. Therefore, the Object Manager transparently transmits only the data that is really
needed and not all of it at once. There is a datatool that generates corresponding data objects
(source code and header files) from the object's ASN.1 specification. The Object Manager is
able to manipulate these objects.

Biological sequences are identified by a Seq_id, which may have different forms.

The most general container object of bio sequence data, as defined in NCBI data model, is
Seq_entry. A great deal of NCBI software is designed to accept a Seq_entry as the primary
unit of data. In general, the Seq_entry is defined recursively as a tree of Seq_entry objects,
where each node contains either Bioseq or list of other Seq_entry objects and additional data
like sequence description, sequence annotations.

Two important concepts in the Object Manager are scope and reference resolution. The client
defines a scope as the sources of data where the system uses only "allowed" sources to look
for data. Scopes may contain several variants of the same bio sequence (Seq_entry). Since
sequences refer to each other, the scope sets may have some data that is common to both scopes.
In this case changing data in one scope should be reflected in all other scopes, which "look"
at the same data.

The other concept a client uses is reference resolution. Reference resolution is used in situations
where different biological sequences can refer to each other. For example, a sequence of amino
acids may be the same as sequence of amino acids in another sequence. The data retrieval
system should be able to resolve such references automatically answering what amino acids
are actually here. Optionally, at the client's request, such automatic resolution may be turned
off.

The Object Manager provides a consistent view of the data despite modifications to the data.
For example, the data may change during a client's session because new biological data has
been uploaded to the database while the client is still processing the old data. In this case, when
the client for additional data, the system should retrieve the original bio sequence data, and not
the most recent one. However, if the database changes between a client's sessions, then the
next time the client session is started, the most recent data is retrieved, unless the client
specifically asks for the older data.

The Object Manager is thread safe, and supports multithreading which makes it possible to
work with bio sequence data from multiple threads.

The Object Manager includes numerous classes for accessing bio sequence data such as
CDataloader and CDataSource which manage global and local accesses to data, CSeqVector
and CSeqMap objects to find and manipulate sequence data, a number of specialized
iterators to parse descriptions and annotations, among others. The CObjectManager and

Introduction to the C++ Toolkit

http://asn1.elibel.tm.fr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 17

CScope classes provide the foundation of the library, managing data objects and coordinating
their interactions.

More details on the Object Manager and related classes is presented in a later chapter.

The SERIAL Module

Click here to see Full Documentation on the Data Serialization Library.

Serial library provides means for loading, accessing, manipulating, and serialization of data in
a formatted way. It supports serialization in ASN.1 (text or BER encoding), XML, and
JSON formats.

The structure of data is described by some sort of formal language. In our case it can be ASN.
1, DTD or XML Schema. Based on such specification, DATATOOL application, which is part
of NCBI C++ toolkit, generates a collection of data storage classes that can be used to store
and serialize data. The design purpose was to make these classes as lightweight as possible,
moving all details of serialization into specialized classes - “object streams”. Structure of the
data is described with the help of “type information”. Data objects contain data and type
information only. Any such data storage object can be viewed as a node tree that provides
random access to its data. Serial library provides means to traversing this data tree without
knowing its structure in advance — using only type information; C++ code generated by
DATATOOL makes it possible to access any child node directly.

“Object streams” are intermediaries between data storage objects and input or output stream.
They perform encoding or decoding of data according to format specifications. Guided by the
type information embedded into data object, on reading they allocate memory when needed,
fill in data, and validate that all mandatory data is present; on writing they guarantee that all
relevant data is written and that the resulting document is well-formed. All it takes to read or
write a top-level data object is one function call —all the details are handled by an object stream.

Closely related to serialization is the task of converting data from one format into another. One
approach could be reading data object completely into memory and then writing it in another
format. The only problem is that the size of data can be huge. To simplify this task and to avoid
storing data in memory, serial library provides “object stream copier” class. It reads data by
small chunks and writes it immediately after reading. In addition to small memory footprint,
it also works much faster.

Input data can be very large in size; also, reading it completely into memory could not be the
goal of processing. Having a large file of data, one might want to investigate information
containers only of a particular type. Serial library provides a variety of means for doing this.
The list includes read and write hooks, several types of stream iterators, and filter templates.
It is worth to note that, when using read hooks to read child nodes, one might end up with an
invalid top-level data object; or, when using write hooks, one might begin with an invalid object
and fill in missing data on the fly — in hooks.

In essence, “hook” is a callback function that client application provides to serial library. Client
application installs the hook, then reads (or writes) data object, and somewhere from the depths
of'serialization processing, the library calls this hook function at appropriate times, for example,
when a data chunk of specified type is about to be read. It is also possible to install context-
specific hooks. Such hooks are triggered when serializing a particular object type in a particular
context; for example, for all objects of class A which are contained in object B.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://asn1.elibel.tm.fr
http://www.w3.org/XML
http://json.org
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 18

The UTIL Module

Checksum

The UTIL module is collection of some very useful utility classes that implement 1/O related
functions, algorithms, container classes; text related and thread related functions. Individual
facilities include classes to compute checksums, implement interval search trees, lightweight
strings, string search, linked sets, random number generation, UTF-8 conversions, registry
based DNS, rotating log streams, thread pools, and many others.

The following sections give an overview of the utility classes:
+ Checksum
+ Console Debug Dump Viewer

+ Diff API

* Floating Point Comparison

« Lightweight Strings

+ Range Support

« Linked Sets

« Random Number Generator
* Registry based DNS

* Resizing Iterator

» Rotating Log Streams

« Stream Support

* String Search
* Synchronized and blocking queue

* Thread Pools
« UTF 8 Conversion

The Checksum class implements CRC32 (Cyclic Redundancy Checksum 32-bit) calculation.
The CRC32 is a 32-bit polynomial checksum that has many applications such as verifying the
integrity of a piece of data. The CChecksum class implements the CRC32 checksum that can
be used to compute the CRC of a sequence of byte values.

The checksum calculation is set up by creating a CChecksum object using the CChecksum
constructor and passing it the type of CRC to be calculated. Currently only CRC32 is defined,
so you must pass it the enumeration constant eCRC32 also defined in the class.

Data on which the checksum is to be computed is passed to the CChecksum'sAddLine() or
AddChars() method as a character array. As data is passed to these methods, the CRC is
computed and stored in the class. You can get the value of the computed CRC using the
GetChecksum() method. Alternatively, you can use the WriteChecksum() method and pass it
a CNcbiOstream object and have the CRC written to the output stream in the following syntax:

/* Original file checksum: lines: nnnn, chars: nnnn, CRC32: xxxxxxxx */

Console Debug Dump Viewer

The UTIL module implements a simple Console Debug Dump Viewer that enables the printing
of object information on the console, through a simple console interface. Objects that can be

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Diff API

Page 19

debugged must be inherited from CDebugDumpable class. The CObject is derived from
CDebugDumpable, and since most other objects are derived from CObject this makes these
objects 'debuggable’.

The Console Debug Dump Viewer is implemented by the CDebugDumpViewer class. This
class implements a breakpoint method called Bpt(). This method is called with the name of the
object and a pointer to the object to be debugged. This method prompts the user for commands
that the user can type from the console:

Console Debug Dump Viewer
Stopped at testfile.cpp(120)
current object: myobj = xxxxxx
Available commands:

t[ypeid] address

d[ump] address depth

go

The CDebugDumpViewer class also permits the enabling and disabling of debug dump
breakpoints from the registry.

The Diff API includes the CDiff class for character-based diffs and the CDiffText class for
line-based diffs. The API is based on the open source Diff, Match and Patch Library and the
Diff Template Library.

To use the Diff API, include xdiff in the LIB line of your application makefile, and include
<util/diff/diff.hpp> in your source.

The following sample code shows how to perform both character- and line-based diffs:

// Print difference list in human readable format
static void s _PrintDiff (const string& msg, const string& sl, const string&
s2,

const CDiffListé& diff)

{

NcbiCout << msg << NcbiEndl

<< "Comparing '" << sl << "' to '"" << 52 << "':" << NcbiEndl;

ITERATE (CDiffList::TList, it, diff.GetList()) {

string op;

0;
0;

size t nl

size t n2

if (it->IsDelete()) {

op = "-";

nl = it->GetLine () .first;

} else if (it->IsInsert()) {

op = "+";
n2 = it->GetLine () .second;
} else {
op = "=";

nl = it->GetLine () .first;

n2 = it->GetLine () .second;

Introduction to the C++ Toolkit

http://code.google.com/p/google-diff-match-patch/
http://code.google.com/p/dtl-cpp/

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 20

}

NCbiCout << op << " ("

<< nl << "," <K<K n2<<mn

<< M MK MY KL it->GetString () << "'" << NCbiEndl;
}

// Perform a character-based diff:
{{
CTempString sl ("how now");

CTempString s2 ("brown cow");

CDiff d;
CDiffList& diffs(d.Diff(sl, s2));
s_PrintDiff ("Line-based diff:", sl, s2, diffs);

}}

// Perform a line-based diff:

{{

CTempString sl ("group l\nasdf asf\ntttt\nasdf asd");
CTempString s2 ("group 2\ngwerty\n\nasdfl\nasf asd");
CDiffText d;

CDiffListé& diffs(d.Diff(sl, s2));

s_PrintDiff ("Line-based diff:", sl, s2, diffs);

}}

For more detailed usage, see the test program:

http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c%2B%2B/src/util/diff/test/

Floating Point Comparison

For technical reasons, direct comparison of "close" floating point values is simply not reliable
on most computers in use today. Therefore, in cases where the values being compared might
be close, it is advisable to apply a tolerance when making comparisons to avoid unexpected
results.

The UTIL module defines a function, g FloatingPoint Compare(), that implements floating
point comparison using a tolerance. In practice this means that code like:

if (a < b) {
if (¢ == d) {
if (e > f) {

should be rewritten as:

#include <util/floating point.hpp>

/.

if (g _FloatingPoint Compare(a, eFP LessThan, b,
eFP_WithPercent, percent) ({

if (g_FloatingPoint Compare(c, eFP EqualTo, d,
eFP_WithFraction, fraction) ({

if (g_FloatingPoint Compare (e, eFP GreaterThan, f,
eFP_WithPercent, percent) ({

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c%252B%252B/src/util/diff/test/

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 21

Note that compared variables must be of the same floating point type, otherwise a compile
error will be generated.

For further details on this function, see its Doxygen documentation.

For technical details on the subject, including what it means to be close, see "Comparing
floating point numbers" by Bruce Dawson.

Lightweight Strings

Linked Sets

Class CTempString implements a light-weight string on top of a storage buffer whose lifetime
management is known and controlled.

CTempString is designed to perform no memory allocation but provide a string interaction
interface congruent with std::basic_string<char>.

As such, CTempString provides a const-only access interface to its underlying storage. Care
has been taken to avoid allocations and other expensive operations wherever possible.

CTempString has constructors from std::string and C-style string, which do not copy the string
data but keep char pointer and string length.

This way the construction and destruction are very efficient.

Take into account, that the character string array kept by CTempString object must remain
valid and unchanged during whole lifetime of the CTempString object.

It's convenient to use the class CTempString as an argument of API functions so that no
allocation or deallocation will take place on of the function call.

The UTIL module defines a template container class, CLinkedMultiset, that can hold a linked
list of multiset container types.

The CLinkedMultiset defines iterator methods begin(), end(), find(), lower_bound(),
upper_bound(), to help traverse the container. The method get(), fetches the contained value,
the method insert() inserts a new value into the container, and the method erase(), removes the
specified value from the container.

Random Number Generator

The UTIL module defines the CRandom class that can be used for generating 32-bit unsigned
random numbers. The random number generator algorithm is the Lagged Fibonacci Generator
(LFG) algorithm.

The random number generator is initialized with a seed value, and then the GetRandom()
method is called to get the next random number. You can also specify that the random number
value that is returned be in a specified range of values.

Range Support

The UTIL module provides a number of container classes that support a range which models
an interval consisting of a set of ordered values. the CRange class stores information about an
interval, [from, to], where the from and to points are inclusive. This is sometimes called a
closed interval.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/floating__point_8hpp.html#a178b404beec22ce1c48057b7a4036c23
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 22

Another class, the CRangeMap class, is similar to the CRange class but allows for the storing
and retrieving of data using the interval as key. The time for iterating over the interval is
proportional to the amount of intervals produced by the iterator and may not be efficient in
some cases.

Another class, the ClntervalTree class, has the same functionality as the CRangeMap class but
uses a different algorithm; that is, one based on McCreight's algorithm. Unlike the CRangeMap
class, the ClntervalTree class allows several values to have the same key interval. This class
is faster and its speed is not affected by the type of data but it uses more memory (about three
times as much as CRangeMap) and, as a result, is less efficient when the amount of interval in
the set is quite big. For example, the ClntervalTree class becomes less efficient than
CRangeMap when the total memory becomes greater than processor cache.

More details on range classes are presented in a later chapter.

Registry based DNS

The UTIL module defines the CSmallDns class that implements a simple registry based DNS
server. The CSmallDns class provides DNS name to IP address translations similar to a standard
DNS server, except that the database used to store DNS name to IP address mappings is a non-
standard local database. The database of DNS names and IP address mappings are kept in a
registry-like file named by local hosts_file using section [LOCAL DNS].

The CSmallDns has two methods that are responsible for providing the DNS name to IP address
translations: the LocalResolveDNS method and the LocalBackResolveDNS method. The
LocalResolveDNS method does 'forward' name resolution. That is, given a host name, it returns
a string containing the IP address in the dotted decimal notation. The LocalBackResolveDN'S
method does a 'reverse lookup'. That is, given an IP address as a dotted decimal notation string,
it returns the host name stored in the registry.

Resizing Iterator

The UTIL module defines two template classes, the CResizinglterator and the
CConstResizinglterator classes that handle sequences represented as packed sequences of
elements of different sizes For example, a vector <char> might actually hold 2-bit values, such
as nucleotides, or 32-bit integer values.

The purpose of these iterator classes is to provide iterator semantics for data values that can
be efficiently represented as a packed sequence of elements regardless of the size.

Rotating Log Streams

The UTIL module defines the CRotatinglogStream class that can be used to implement a
rotating log file. The idea being that once the log of messages gets too large, a 'rotation'
operation can be performed. The default rotation is to rename the existing log file by appending
it with a timestamp, and opening a new log.

The rotating log can be specified as a file, with an upper limit (in bytes) to how big the log will
grow. The CRotatingLogStream defines a method called Rotate() that implements the default
rotation.

Stream Support

The UTIL module defines a number of portable classes that provide additional stream support
beyond that provided by the standard C++ streams. The CByteSource class acts as an abstract
base class (see Figure 7), for a number of stream classes derived from it. As the name of the

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 23

other classes derived from CByteSource suggests, each of these classes provides the methods
from reading from the named source. To list a few examples: CFileByteSource is a specialized
class for reading from a named file; CMemoryByteSource is a specialized class for reading
from a memory buffer; CResultByteSource is a specialized class for reading database results;
CStreamByteSource is a specialized class from reading from the C++ input stream (istream);
CFStreamByteSource is a specialized class from reading from the C++ input file stream
(ifstream).

The classes such as CSubFileByteSource are used to define a slice of the source stream in terms
of a start position and a length. The read operations are then confined to this slice.

Additional classes, the CIStreamBuffer and the COStreamBuffer have been defined for
standard input and output buffer streams. These can be used in situations where a compiler's
implementation of the standard input and output stream buffering is inefficient.

More details on the stream classes are presented in a later chapter.

String Search

The UTIL module defines the CBoyerMooreMatcher class and the CTextFsm class which are
used for searching for a single pattern over varying texts.

The CBoyerMooreMatcher class, as the name suggests, uses the Boyer-Moore algorithm for
string searches. The CTextFsm is a template class that performs the search using a finite state
automaton for a specified to be matched data type. Since the matched data type is often a string,
the CTextFsa class is defined as a convenience by instantiating the CTextFsm with the matched
type template parameter set to string.

The search can be setup as a case sensitive or case insensitive search. The default is case
sensitive search. In the case of the CBoyerMooreMatcher class, the search can be setup for any
pattern match or a whole word match. A whole word match means that a pattern was found to
be between white spaces. The default is any pattern match.

Synchronized and blocking queue

The UTIL module defines class CSyncQueue which implements a thread-safe queue that has
“blocking” semantics: when queue is empty Pop() method will effectively block execution
until some elements will be added to the queue; when queue have reached its maximum size
Push() method will block execution until some elements will be extracted from queue. All these
operations can be controlled by timeout. Besides that CSyncQueue is not bound to first-in-
first-out queue paradigm. It has underlying stl container (deque by default) which will define
the nature of queue. This container is set via template parameter to CSyncQueue and can be
deque, vector, list, CSyncQueue_set, CSyncQueue multiset and CSyncQueue_priority queue
(the latter three are small addons to STL set, multiset and priority queue for the sake of
compatibility with CSyncQueue).

There is also CSyncQueue:: TAccessGuard class which can lock the queue for some bulk
operations if during them queue should not be changed by other threads.

For more details on CSyncQueue look here: http://www.ncbi.nlm.nih.gov/IEB/ToolBox/
CPP_DOC/doxyhtml/CSyncQueueDescription.html.

Thread Pools

The UTIL module defines a number of classes implementing pool of threads.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/CSyncQueueDescription.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/CSyncQueueDescription.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 24

CThreadPool is the main class. It executes any tasks derived from the CThreadPool Task class.
The number of threads in pool is controlled by special holder of this policy — object derived
from CThreadPool Controller (default implementation is CThreadPool Controller PID based
on Proportional-Integral-Derivative algortithm). All threads executing by CThreadPool are the
instances of CThreadPool Thread class or its derivatives.

More details on threaded pool classes are presented in a later chapter.

UTF 8 Conversion

The UTIL module provides a number of functions to convert between UTF-8 representation,
ASCII 7-bit representation and Unicode representations. For example, StringToCode()
converts the first UTF-8 character in a string to a Unicode symbol, and StringToVector()
converts a UTF-8 string into a vector of Unicode symbols.

The result of a conversion can be success, out of range, or a two character sequence of the skip
character (0xFF) followed by another character.

Introduction to the C++ Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 25

CNcbhiApplication

+Init()
O—+Run()
+Exit()
+AppMain()

FAN

MyApplicationClass

+Init()
+Run()
+Exit()
+AppMain()

User must at least supply implementation of Run() method, and
optionally override Init() and Exit() methods

Figure 1. The CNcbiApplication class

CConn_lOStream

CConn_HttpStream | l CConn_MemoryStream ‘ | CConn_ServiceStream | | CConn_SocketStream

Figure 2. Connection stream classes

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CButtonList

| CHTMLBasicPage |

| CHTMLDualNode |

CHTMLNode

| CHTMLPlainText |

CHTMLF’npupMenu|

s

CObject CHNCEIMNode

"l

| CHTMLTagNode |

CHTMLT ext
CPagerBox

CSelection

| CsmallPagerBox |

Figure 3. HTML classes derived from CNCBINode

Introduction to the C++ Toolkit

Page 26

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CNCBINode ‘

Page 27

CAsnWriteNode CHTMLOpenElement CHTMLComment
F E 4 [* ¥
III|I "'. \\
IIIII \\
CHTML_basefont CHTML hr CHTML input ‘ CHTMLInlineElement
CHTML_br CHTML _img ‘ CHTML_meta

Figure 4. The CHTMLNode class and its derived classes

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CHTMLOpenElement

Page 28

| CHTML_checkbox |

CHTML_file

| CHTML _hidden|

‘_/_/_J CHTML_image |
ﬂx\ CHTML_radio |

| CHTML reset |

| cHTML_submit |

CHTML_text |

Figure 5. The CHTML input class and its derived classes

Figure 6. HTML page classes

| CDebugDumpable |

CObject

CMCEINode

| cHTMLBasicPage |

CHTMLFage

Introduction to the C++ Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 29

| cDebugbumpabie |

CByteSource

| cFileBytesource | | cMemoryByteSource | | CResultByteSource | | CStreamByteSource |
1
| CSubFileByteSource | | CFStreamByteSource |

Figure 7. Relationship between CByteSource and its derived classes

Introduction to the C++ Toolkit

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The

NCBI C++ Toolkit

2: Getting Started

Last Update: June 29, 2012.

Overview

The overview for this chapter consists of the following topics:

Introduction

Chapter Outline

Introduction

This section is intended as a bird's-eye view of the Toolkit for new users, and to give quick access
to important reference links for experienced users. It lays out the general roadmap of tasks required
to get going, giving links to take the reader to detailed discussions and supplying a number of
simple, concrete test applications.

Note: Much of this material is platform-neutral, although the discussion is platform-centric. Users
would also benefit from reading the instructions specific to those systems and, where applicable,
how to use Subversion (SVN) with MS Windows and Mac OS.

Chapter Outline

The following is an outline of the topics presented in this chapter:

Quick Start

Example Applications

Example Libraries

Source Tree Availability
— FTP Availability

— SVN Availability
— Availability via Shell Scripts

Source Tree Contents
— Top-Level Source Organization
— The Core NCBI C++ Toolkit
— Source Tree for Individual Projects
— The Makefile Templates
— The New Module Stubs
Decide Where You Will Work (in-tree, in a subtree, out-of-tree)

Basic Installation and Configuration Considerations
Basics of Using the C++ Toolkit

— Compiling and Linking with make
— Makefile Customization

— Basic Toolkit Coding Infrastructure
— Key Classes

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

— The Object Manager and datatool

— Debugging and Diagnostic Aids
— Coding Standards and Guidelines

Noteworthy Files

Quick Start

A good deal of the complication and tedium of getting started has thankfully been wrapped by
a number of shell scripts. They facilitate a 'quick start' whether starting anew or within an
existing Toolkit work environment. ('Non-quick starts' sometimes cannot be avoided, but they
are considered elsewhere.)

* Get the Source Tree (see Figure 1)
— Retrieve via SVN (in-house | public), or
— Download via FTP, or

— Run svn_core (requires a SVN repository containing the C++ Toolkit; for
NCBI users)

» Configure the build tree (see Figure 2)
— Use the configure script, or
— Use a compiler-specific wrapper script (e.g. compilers/unix/*.sh).
* Build the C++ Toolkit from makefiles and meta-makefiles(if required)
— make all_r for a recursive make, or
— make all to make only targets for the current directory.

* Work on your new or existing application or library the scripts new_project and
(for an existing Toolkit project) import_project help to set up the appropriate makefiles
and/or source.

In a nutshell, that's all it takes to get up and running. The download, configuration, installation
and build actions are shown for two cases in this sample.

The last item, employing the Toolkit in a project, completely glosses over the substantial issue
of how to use the installed Toolkit. Where does one begin to look to identify the functionality
to solve your particular problem, or indeed, to write the simplest of programs? "Basics of Using
the C++ Toolkit" will deal with those issues. Investigate these and other topics with the set of
sample applications. See Examples for further cases that employ specific features of the NCBI
C++ Toolkit.

Example Applications

The suite of application examples below highlight important areas of the Toolkit and can be
used as a starting point for your own development. Note that you may generate the sample
application code by running the new_project script for that application. The following
examples are now available:

« app/basic - This example builds two applications: a generic application (basic_sample)
to demonstrate the use of key Toolkit classes, and an example program
(multi_command) that accepts multiple command line forms.

+ app/alnmgr - Creates an alignment manager application.

« app/asn - Creates a library based on an ASN.1 specification, and a test application.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/alnmgr/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/asn/

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

+ app/blast - Creates an application that uses BLAST.

+ app/cgi - Creates a Web-enabled CGI application.

« app/dbapi - Creates a database application.

» app/eutils - Creates an eUtils client application.

« app/lds - Creates an application that uses local data storage (LDS).

« app/netcache - Creates an application that uses NetCache.

+ app/netschedule - Creates an NCBI GRID application that uses NetSchedule.
+ app/objects - Creates an application that uses ASN.1 objects.

+ app/objmgr - The Toolkit manipulates biological data objects in the context of an
Object Manager class (CObjectManager). This example creates an application that
uses the object manager.

« app/sdbapi - Creates a database application that uses SDBAPI.

« app/serial - Creates a dozen applications that demonstrate using serial library hooks,
plus a handful of other applications that demonstrate other aspects of the serial library.

» app/soap/client - Creates a SOAP client application.
« app/soap/server - Creates a SOAP server application.
* app/unit_test - Creates an NCBI unit test application.

To build an example use its accompanying Makefile.

Example Libraries

The following example libraries can be created with new_project and used as a starting point
for a new library:

+ lib/basic - Creates a trivial library (it finds files in PATH) for demonstrating the basics
of'the build system for libraries. This example library includes a simple test application.

+ lib/asn - Creates an ASN.1 object project.
+ lib/dtd - Creates an XML DTD project.
* lib/xsd - Creates an XML Schema project.

Source Tree Availability

The source tree is available through FTP, SVN and by running special scripts. The following
subsections discuss these topics in more detail:

« FTP Availability

* SVN Availability
« Availability via Shell Scripts

FTP Availability

The Toolkit source is available via ftp at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/
CURRENT/, and the archives available, with unpacking instructions, are listed on the
download page. If you plan to modify the Toolkit source in any way with the ftp code, it is
strongly advised that it be placed under a source code control system (preferably SVN) so that
you can rollback to an earlier revision without having to ftp the entire archive once again.

SVN Availability

NCBI users can obtain the source tree directly from the internal SVN repository.

Getting Started

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/blast/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/cgi/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/dbapi/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/eutils/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/lds/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/netcache/
http://www.ncbi.nlm.nih.gov/books/NBK7146/#ch_app.ncbi_netcache_service
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/netschedule/
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/GRID
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/NetSchedule
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objmgr/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/sdbapi/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/serial/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/soap/client/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/soap/server/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/unit_test/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/lib/basic/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/lib/asn_lib/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/lib/dtd/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/lib/xsd/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

A read-only repository is also available to the public.

Availability via Shell Scripts

For NCBI users, the various shell scripts in SNCBI/c++/scripts tailor the working codebase
and can prepare the work environment for new projects. Except where noted, an active Toolkit
SVN repository is required, and obviously in all cases a version of the Toolkit must be
accessible.

svn_core. Details on svn_core are discussed in a later chapter.
import_project. Details on import_project are discussed in a later chapter.
new_project. Details on new_project are discussed in a later chapter.

update projects. Details on update core and update projects are covered in later
chapter.

Source Tree Contents

The following topics are discussed in this section:

Top-Level Source Organization
The Core NCBI C++ Toolkit

Source Tree for Individual Projects
The Makefile Templates
The New Module Stubs

Top-Level Source Organization

The NCBI C++ Toolkit source tree (see Figure 1) is organized as follows:

src/ -- a hierarchical directory tree of NCBI C++ projects. Contained within src are all
source files (*.cpp, *.c), along with private header files (*.hpp, *.h), makefiles
(Makefile.*, including Makefile.mk), scripts (*.sh), and occasionally some project-
specific data

include/ -- a hierarchical directory tree whose structure mirrors the src directory tree.
It contains only public header files (*.hpp, *.h).

Example:include/corelib/ contains public headers for the sources located in src/corelib/

scripts/ -- auxiliary scripts, including those to help manage interactions with the NCBI
SVN code repository, such as import_project, new_project, and svn_core.

files for platform-specific configuration and installation:

— compilers/ -- directory containing compiler-specific configure wrappers (unix/
* sh) and miscellaneous resources and build scripts for MS Windows/
MacOS platforms

— configure -- a multi-platform configuration shell script (generated from
template configure.ac using autoconf)

— various scripts and template files used by configure, autoconf

doc/ -- NCBI C++ documentation, including a library reference, configuration and
installation instructions, example code and guidelines for everybody writing code for
the NCBI C++ Toolkit.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/common/config/ncbiconf_msvc.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/common/config/ncbiconf_xcode.h
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

The Core NCBI C++ Toolkit

The 'core' libraries of the Toolkit provide users with a highly portable set of functionality. The
following projects comprise the portable core of the Toolkit:

corelib connect cgi html util

Consult the library reference (Part 3 of this book) for further details.

Source Tree for Individual Projects

For the overall NCBI C++ source tree structure see Top-Level Source Organization above.

An individual project contains the set of source code and/or scripts that are required to build a
Toolkit library or executable. In the NCBI source tree, projects are identified as sub-trees of
the src, and include directories of the main C++ tree root. For example, corelib and objects/
objmgr are both projects. However, note that a project's code exists in two sibling directories:
the public headers in include/ and the source code, private headers and makefiles in src.

The contents of each project's source tree are:
* *.cpp, *.hpp -- project's source files and private headers

* Makefile.in -- a meta-makefile to specify which local projects (described in
Makefile.*.in) and sub-projects(located in the project subdirectories) must be built

* Makefile.*.lib, Makefile.*.app -- customized makefiles to build a library or an
application

* Makefile.* -- "free style" makefiles

* sub-project directories (if any)

The Makefile Templates

Each project is built by customizing a set of generic makefiles. These generic makefile
templates (Makefile.*.in) are found in src and help to control the assembly of the entire Toolkit
via recursive builds of the individual projects. (The usage of these makefiles and other
configurations issues are summarized below and detailed on the Working with Makefiles page.)

+ Makefile.in -- makefile to perform a recursive build in all project subdirectories

* Makefile.meta.in -- included by all makefiles that provide both local and recursive
builds

* Makefile.mk.in -- included by all makefiles; sets a lot of configuration variables

+ Makefile.lib.in -- included by all makefiles that perform a "standard" library build,
when building only static libraries.

+ Makefile.dll.in -- included by all makefiles that perform a "standard" library build,
when building only shared libraries.

* Makefile.both.in -- included by all makefiles that perform a "standard" library build,
when building both static and shared libraries.

+ Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles
(Makefile.*.1ib[.in]) that perform a "standard" library build

+ Makefile.app.in -- included by all makefiles that perform a "standard" application build

+ Makefile.app.tmpl.in -- serves as a template for the project customized makefiles
(Makefile.*.app[.in]) that perform a "standard" application build

* Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object
files; included by most other makefiles

Getting Started

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

The New Module Stubs

A Toolkit module typically consists of a header (*.hpp) and a source (*.cpp) file. Use the
stubs provided, which include boilerplate such as the NCBI disclaimer and SVN revision
information, to easily start a new module. You may also consider using the sample code
described above for your new module.

Decide Where You Will Work (in-tree, in a subtree, out-of-tree)

Depending on how you plan to interact with the NCBI C++ Toolkit source tree, the Toolkit
has mechanisms to streamline how you create and manage projects. The simplest case is to
work out-of-tree in a private directory. This means that you are writing new code that needs
only to link with pre-built Toolkit libraries. If your project requires the source for a limited set
of Toolkit projects it is often sufficient to work in a subtree of the Toolkit source distribution.

Most users will find it preferable and fully sufficient to work in a subtree or a private directory.
Certain situations and users (particularly Toolkit developers) do require access to the full
Toolkit source tree; in such instances one must work in-tree.

Basic Installation and Configuration Considerations

Note: Much of this discussion is Unix-centric. Windows and Mac users would also benefit
from reading the instructions specific to those systems.

The configuration and installation process is automated with the configure script and its
wrappers in the compilers directory. These scripts handle the compiler- and platform-
dependent Toolkit settings and create the build tree (see Figure 2) skeleton. The configured
build tree, located in <builddir>, is populated with customized meta-makefile, headers and
source files. Most system-dependence has been isolated in the <builddir>/inc/ncbiconf.h
header. By running make all_r from <builddir>, the full Toolbox is built for the target platform
and compiler combination.

Summarized below are some basic ways to control the installation and configuration process.
More comprehensive documentation can be found at config.html.

* A Simple Example Build

+ configure Options View the list of options by running
./configure --help

* Enable/Disable Debugging

+ Building Shared and/or Static Libraries Shared libraries (DLL's) can be used in Toolkit
executables and libraries for a number of tested configurations. Note that to link with
the shared libraries at run time a valid runpath must be specified.

« Ifyou are outside NCBI, make sure the paths to your third party libraries are correctly
specified. See Site-Specific Third Party Library Configuration for details.

+ Influencing configure via Environment Variables Several environment variables
control the tools and flags employed by configure. The generic ones are: CC, CXX,
CPP, AR, RANLIB, STRIP, CFLAGS, CXXFLAGS, CPPFLAGS, LDFLAGS, LIBS.
In addition, you may manually set various localization environment variables.

* Multi-Thread Safe Compilation

* Controlling Builds of Optional Projects You may selectively build or not build one
of the optional projects ("serial", "ctools", "gui", "objects", "internal") with configure
flags. If an optional project is not configured into your distribution, it can be added

later using the import_projects script.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

* Adjust the Configuration of an Existing Build If you need to update or change the
configuration of an existing build, use the reconfigure.sh or relocate.sh script.

+ Working with Multiple build trees Managing builds for a variety of platforms and/or
compiler environments is straightforward. The configure/install/build cycle has been
designed to support the concurrent development of multiple builds from the same
source files. This is accomplished by having independent build trees that exist as
sibling directories. Each build is configured according to its own set of configuration
options and thus produces distinct libraries and executables. All builds are nonetheless
constructed from the same source code in SNCBI/c++/{src, include}.

Basics of Using the C++ Toolkit

The following topics are discussed in this section:
+ Compiling and Linking with make
* Makefile Customization
+ Basic Toolkit Coding Infrastructure
+ Key Classes
« The Object Manager and datatool

+ Debugging and Diagnostic Aids
* Coding Standards and Guidelines

Compiling and Linking with make

The NCBI C++ Toolkit uses the standard Unix utility make to build libraries and executable
code, using instructions found in makefiles. More details on compiling and linking with make
can be found in a later chapter.

To initiate compilation and linking, run make:
make -f <Makefile Name> [<target name>]

When run from the top of the build tree, this command can make the entire tree (with target
all r). If given within a specific project subdirectory it can be made to target just that project.
The Toolkit has in its src directory templates (e.g., Makefile.*.in) for makefiles and meta-
makefiles that define common file locations, compiler options, environment settings, and
standard make targets. Each Toolkit project has a specialized meta-makefile in its src directory.
The relevant meta-makefile templates for a project, e.g., Makefile.in, are customized by
configure and placed in its build tree. For new projects, whether in or out of the C++ Toolkit
tree, the programmer must provide either makefiles or meta-makefiles.

Makefile Customization

Fortunately, for the common situations where a script was used to set up your source, or if you
are working in the C++ Toolkit source tree, you will usually have correctly customized
makefiles in each project directory of the build tree. For other cases, particularly when using
the new_project script, some measure of user customization may be needed. The more frequent
customizations involve (see "Working with Makefiles" or "Project makefiles" for a full
discussion):

* meta-makefile macros: APP_PROJ, LIB_PROJ, SUB PROJ, USR PROJ Lists of
applications, libraries, sub-projects, and user projects, respectively, to make.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

Library and Application macros: APP, LIB, LIBS, OBJ, SRC List the application name
to build, Toolkit library(ies) to make or include, non-Toolkit library(ies) to link, object
files to make, and source to use, respectively.

Compiler Flag Macros: CFLAGS, CPPFLAGS, CXXFLAGS, LDFLAGS Include or
override C compiler, C/C++ preprocessor, C++ compiler, and linker flags,
respectively. Many more localization macros are also available for use.

Altering the Active Version of the Toolkit You can change the active version of NCBI
C++ toolkit by manually setting the variable $(builddir) in Makefile.foo_[app|lib] to
the desired toolkit path, e.g.: builddir = $(NCBI)/c++/GCC-Release/build.

Consult this list or, better, look at the output of 'ls -d $NCBI/c++/*/build' to see those
pre-built Toolkit builds available on your system.

Basic Toolkit Coding Infrastructure

Summarized below are some features of the global Toolkit infrastructure that users may
commonly employ or encounter.

The NCBI Namespace Macros The header ncbistl.hpp defines three principal
namespace macros: NCBI NS STD, NCBI NS NCBI and

NCBI_USING NAMESPACE STD. Respectively, these refer to the standard C++
std:: namespace, a local NCBI namespace ncbi:: for Toolkit entities, and a namespace
combining the names from NCBI NS STD and NCBI NS NCBI.

Using the NCBI Namespaces Also in ncbistL.hpp are the macros
BEGIN_NCBI_SCOPE and END_NCBI_SCOPE. These bracket code blocks which
define names to be included in the NCBI namespace, and are invoked in nearly all of
the Toolkit headers (see example). To use the NCBI namespace in a code block, place
the USING_NCBI_SCOPE macro before the block references its first unqualified
name. This macro also allows for unqualified use of the std:: namespace. Much of the
Toolkit source employs this macro (see example), although it is possible to define and
work with other namespaces.

Configuration-Dependent Macros and ncbiconf.h #ifdef tests for the configuration-
dependent macros, for example DEBUG or NCBI_OS UNIX, etc., are used
throughout the Toolkit for conditional compilation and accommodate your
environment's requirements. The configure script defines many of these macros; the
resulting #define's appear in the ncbiconf.h header and is found in the <builddir>/inc
directory. It is not typically included explicitly by the programmer, however. Rather,
it is included by other basic Toolkit headers (e.g., ncbitype.h, ncbicfg.h, ncbistl.hpp)
to pick up configuration-specific features.

NCBI Types (ncbitype.h, ncbi_limits.[h/hpp]) To promote code portability developers
are strongly encouraged to use these standard C/C++ types whenever possible as they
are ensured to have well-defined behavior throughout the Toolkit. Also see the current
type-use rules. The ncbitype.h header provides a set of fixed-size integer types for
special situations, while the ncbi_limits.[h| hpp] headers set numeric limits for the
supported types.

The ncbistd.hpp header The NCBI C++ standard #include's and #defin'itions are found
in ncbistd.hpp, which provides the interface to many of the basic Toolkit modules. The
explicit NCBI headers included by ncbistd.hpp are: ncbitype.h, ncbistl.hpp,
ncbistr.hpp, ncbidbg.hpp, ncbiexpt.hpp and ncbi_limits.h.

Portable Stream Handling Programmers can ensure portable stream and buffer I/O
operations by using the NCBI C++ Toolkit stream wrappers, typedef's and #define's
declared in the ncbistre.hpp. For example, always use CNcbilstream instead of

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/find?string=ncbiconf.h
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Key Classes

Page 9

YourFavoriteNamespace::istream and favor NcbiCin over cin. A variety of classes that
perform case-conversion and other manipulations in conjunction with NCBI streams
and buffers are also available. See the source for details.

Use of the C++ STL (Standard Template Library) in the Toolkit The Toolkit employs
the STL's set of template container classes, algorithms and iterators for managing
collections of objects. Being standardized interfaces, coding with them provides
portability. However, one drawback is the inability of STL containers to deal with
reference objects, a problem area the Toolkit's CRef and CObject classes largely
remedy.

Serializable Objects, the ASN.1 Data Types and datatool The ASN.1 data model for
biological data underlies all of the C and C++ Toolkit development at NCBI. The C+
+ Toolkit represents the ASN.1 data types as serializable objects, that is, objects able
to save, restore, or transmit their state. This requires knowledge of an object's type and
as such a CTypelnfo object is provided in each class to encapsulate type
information.

Additionally, object stream classes (CObject[IO]Stream, and subclasses) have been
designed specifically to perform data object serialization. The nuts-and-bolts of doing
this has been documented on the Processing Serial Data page, with additional
information about the contents and parsing of ASN.1-derived objects in Traversing a
Data Structure.Each of the serializable objects appears in its own subdirectory under
[src| include]/objects. These objects/* projects are configured differently from the rest
of the Toolkit, in that header and source files are auto-generated from the ASN.1
specifications by the datatool program. The --with-objects flag to configure also directs
a build of the user classes for the serializable objects.

For reference, we list some of the fundamental classes used in developing applications with
the Toolkit. Some of these classes are described elsewhere, but consult the library reference
(Part 3 of this book) and the source browser for complete details.

CNcbiApplication (abstract class used to define the basic functionality and behavior
of an NCBI application; this application class effectively supersedes the C-style
main() function)

CArgDescriptions, CArgs, and CArgValue (command-line argument processing)
CNcbiEnvironment (store, access, and modify environment variables)
CNcbiRegistry (load, access, modify and store runtime information)

CNcbiDiag (error handling for the Toolkit;)

CObject (base class for objects requiring a reference count)

CRef (a reference-counted smart pointer; particularly useful with STL and template
classes)

CObject[IO]Stream (serialized data streams)

CTypelnfo and CObjectTypelnfo (Runtime Object Type Information; extensible to
user-defined types)

CObjectManager, etc. (classes for working with biological sequence data)

CCgiApplication, etc. (classes to create CGI and Fast-CGI applications and handle
CGI Diagnostics)

CNCBINode, etc. (classes representing HTML tags and Web page content)

Iterator Classes (easy traversal of collections and containers)

Getting Started

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/DATAMODL.HTML
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_browse
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 10
+ Exception Handling (classes, macros and tracing for exceptions)

The Object Manager and datatool

The datatool processes the ASN.1 specifications in the src/objects/directories and is the C++
Toolkit's analogue of the C Toolkit's asntool. The goal of datatool is to generate the class
definitions corresponding to each ASN.1 defined data entity, including all required type
information. As ASN.1 allows data to be selected from one of several types in a choice
element, care must be taken to handle such cases.

The Object Manager is a C++ Toolkit library whose goal is to transparently download data
from the GenBank database, investigate bio sequence data structure, and retrieve sequence
data, descriptions and annotations. In the library are classes such as CDataL.oader and
CDataSource which manage global and local accesses to data, CSeqVector and CSeqMap
objects to find and manipulate sequence data, a number of specialized iterators to parse
descriptions and annotations, among others. The CObjectManager and CScope classes provide
the foundation of the library, managing data objects and coordinating their interactions.

Jump-start and Object Manager FAQ are all available to help new users.

Debugging and Diagnostic Aids

The Toolkit has a number of methods for catching, reporting and handling coding bugs and
exceptional conditions. During development, a debug mode exists to allow for assertions, traces
and message posting. The standard C++ exception handling (which should be used as much
as possible) has been extended by a pair of NCBI exception classes, CErrnoException and
CParseException and additional associated macros. Diagnostics, including an ERR_POST
macro available for routine error posting, have been built into the Toolkit infrastructure.

For more detailed and extensive reporting of an object's state (including the states of any
contained objects), a special debug dump interface has been implemented. All objects derived
from the CObject class, which is in turn derived from the abstract base class
CDebugDumpable, automatically have this capability.

Coding Standards and Guidelines

All C++ source in the Toolkit has a well-defined coding style which shall be used for new
contributions and is highly encouraged for all user-developed code. Among these standards
are

+ variable naming conventions (for types, constants, class members, etc.)
* using namespaces and the NCBI name scope
+ code indentation (4-space indentation, no tab symbols)

* declaring and defining classes and functions

Noteworthy Files

A list of important files is given in Table 1.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

NCBI C++ source tree

cH+
(svn co -d c++internal/c++)

“include" would basically
mirrar the hierarchy of “src/™,

especially for the library
projects

Example for ICC:

svn co https:svn/....Jc++
cd c++
compilers/ICC_sh

make

make check

This will retreive the NCBI C++ Toolkit sources, configure them to build with ICC

compiler, build everything, then run testsuite

Figure 1. NCBI C++ Source Tree

Getting Started

Page 11

compilers/ src/ include/
configure Project sources Profect public headers
[— L_______‘:____i____
Makefile.in ; I
I |
Makefile. * in corelib/ f htmilf ! : foobar/
_______________ | B R i o et
| [rsie e Tnia J _______ 1
|
Makefile.in : :
Makefile.corelib.lib test/ | demo/ |
“opp : |
. |
P J ------- 1
I |
s e I Makefile.in I
- keggkg:fr‘:;t " I Makefile.cgidemo.app |
: ol lf cgidemo.cpp :
[

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 12

NCBI C++ build tree

The NCBI C++ build tree hierarchy
mirrars the hierarchy of the NCBI
C++ source tree (“ct+/sre').

c++ffool

It is possible to deploy several build
trees — each pointing to the same
source tree, but using other tools

and/or flags.

bin/ liby/

build/

inc/ status/

xnchilib
xhtml liky

coretest.exe
cgidemo.exea

Makefile.mk
Makefile.”

congig.status
nehiconf.h config.cache
config.log

Makefile corelib/

] D

r 1
hitmlf I | foobar/ 1

‘ “status/config.status’ can be

Makefile
*.obj
xnchbi.lib

used for a quick
recanfiguration of all
makefiles,

demo/
“buildMakefile.mk” contains:
- paths to the compiler and

other tools
- all compilation and link flags
- path to the NCBI C++ source dir

Denis Vakatov, NCB!
270480

Makefile
coretest.obj
coretesi.exe

Makefile “ine/nchiconf.h” defines the
cgidemo.obj | preprocessor variables to
cgidemo.exe | reflect the used compiler's

“featuras”,

Figure 2. NCBI C++ Build Tree

Getting Started

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 1. Noteworthy Files

Page 13

Filename (relative to SNCBI/c++)

Description

compilers/*/<compiler_name>.sh

Use the configure shell script, or one of its compiler-specific wrappers, to fully configure
and install all files required to build the Toolkit.

import_project

Import only an existing Toolkit project into an independent subtree of your current
Toolkit source tree. (Requires a SVN source repository.)

update_{core|projects}

Update your local copy of either the core Toolkit or set of specified projects. (Requires
a SVN source repository.)

new_project

Set up a new project outside of the NCBI C++ Toolkit tree to access pre-built version of
the Toolkit libraries. Sample code can be requested to serve as a template for the new
module.

src/<project_dir>/Makefile.in
src/<project_dir>/
Makefile.<project>.{app, lib}

Customized meta-makefile template and the corresponding datafile to provide project-
specific source dependencies, libraries, compiler flags, etc. This information is accessed
by configure to build a projects's meta-makefile (see below).

doc/framewrk. {cpp|hpp}

Basic templates for source and header files that can be used when starting a new module.
Includes common headers, the NCBI disclaimer and SVN keywords in a standard way.

CHECKOUT_STATUS

This file summarizes the local source tree structure that was obtained when using one of
the shell scripts in scripts. (Requires a SVN source repository.)

Build-specific Files (relative to SNCBI/c++/
<builddir>)

Description

Makefile
Makefile.mk
Makefile.meta

These are the primary makefiles used to build the entire Toolkit (when used recursively).
They are customized for a specific build from the corresponding *.in templates in SNCBI/
c++/src. Makefile is the master, top-level file, Makefile.mk sets many make and shell
variables and Makefile.meta is where most of the make targets are defined.

<project_dir>/Makefile
<project_dir>/
Makefile.<project>_{app, lib}

Project-specific custom meta-makefile and makefiles, respectively, configured from
templates in the src/ hierarchy and any pertinent src/<project_dir>/Makefile.<project>.
{app, lib} files (see REF TO OLD ANCHOR:

get_started.html_ref TmplMetaMake<secref

rid="get_started.html_ref ImptFiles">above</secref>).

inc/ncbiconf.h

Header that #define's many of the build-specific constants required by the Toolkit. This
file is auto-generated by the configure script, and some pre-built versions do exist in
compilers.

reconfigure.sh

Update the build tree due to changes in or the addition of configurable files (*.in files,
such as Makefile.in or the meta-makefiles) to the source tree.

relocate.sh

Adjust paths to this build tree and the relevant source tree.

corelib/ncbicfg.c

Define and manage the runtime path settings. This file is auto-generated by the configure
script.

status/config. {cache|log|status}

These files provide information on configure's construction of the build tree, and the
cache of build settings to expedite future changes.

Getting Started

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

Part 2: Development Framework

Part 2 deals with the development framework, and discusses how to download the Toolkit code
and configure the source code for different platforms, how to build the libraries and executables,
how to setup projects, and the recommended style for writing code. The following is a list of
chapters in this part:

3 Retrieve the Source Code (FTP and Subversion)
4 Configure, Build, and Use the Toolkit

5 Working with Makefiles

6 Project Creation and Management

7 Programming Policies and Guidelines

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

3: Retrieve the Source Code (FTP and Subversion)

Created: April 1, 2003.
Last Update: May 16, 2013.

Overview
The overview for this chapter consists of the following topics:
* Introduction

« Chapter Outline

Introduction

The first step in working with the C++ Toolkit is getting the source code, which can be either
downloaded from anonymous FTP or checked out from a Subversion repository. This chapter
describes both methods and the use of utility scripts that can help getting only the necessary source
code components.

If you are interested in downloading source code from the C Toolkit instead of the C++ Toolkit,
please see Access to the C Toolkit source tree Using CVS.

Chapter Outline

The following is an outline of the topics presented in this chapter:
* Public Access to the Source Code via FTP

+ Read-Only Access to the Source Code via Subversion
» Read-Write Access to the Source Code via Subversion (NCBI only)
— NCBI Source Tree Contents

— Source Code Retrieval under Unix
4 Retrieval of the C++ Toolkit Source Code Tree
« Checking Out the Development NCBI C++ Toolkit Source Tree
+ Checking Out the Production NCBI C++ Toolkit Source Tree

« svn core: Retrieving core components

* import_project: Retrieve Source for an Existing Project

» update core: Update the Portable and Core Components

» update projects: Check out and Update Sources of Selected
Projects
— Source Code Retrieval under MS Windows

— Source Code Retrieval under Mac OS X
* Source Tree Structure Summary

Public Access to the Source Code via FTP
* FTP Download Now

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_res

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

Available FTP Archives: Select the archive for your system. When the dialog box
appears, choose the destination in your file system for the downloaded archive.
Note: With some browsers, you may need to right-click-and-hold with your mouse and
use the 'Save Link As...", 'Copy to Folder...", or similar options from the drop-down
menu to properly save the archive. For a current list of the source code archives for
different operating system/compiler combinations consult the current Release Notes
available at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/

RELEASE NOTES.html

Unpack the Source Archive

— Unix and Macintosh Systems
The Unix distributions have been archived using the standard tar command
and compressed using gzip. When unpacked, all files will be under the
directory ncbi_cxx--<version_number>, which will be created in the current
directory. (Caution: If ncbi_cxx--<version number> already exists, tar
extraction will overwrite existing files.) To unpack the archive: gunzip -c
ncbi_cxx--*.tar.gz | tar xvf -

— Windows Systems
The Microsoft Windows versions of the source distribution have been prepared
as self-extracting executables. By default a sub-folder ncbi_cxx--
<version_number > will be created in the current folder to contain the extracted
source. I[f ncbi_cxx--<version_number > already exists in the folder where the
executable is launched, user confirmation is required before files are
overwritten. To actually perform the extraction, do one of the following:

4 Run the executable from a command shell. This will create the sub-
folder in the shell's current directory, even if the executable is located
somewhere else.

4 Double-click on the archive's icon to create ncbi_cxx--
<version_number > in the current folder.

¢ Right-click on the archive's icon, and select 'Extract to...' to unpack
the archive to a user-specified location in the filesystem.

Read-Only Access to the Source Code via Subversion

The following options for read-only access to the C++ Toolkit Subversion repository are
available to the public:

Checking out the source tree directly from the repository (e.g. svn co http://
anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++).

Browsing the repository with an HTTP browser (e.g. http://www.ncbi.nlm.nih.gov/
viewvc/v1/trunk/c++).

Accessing the repository with a WebDAYV client (also using http://
anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++ — although some clients may require
dav:// instead of http://).

Read-Write Access to the Source Code via Subversion (NCBI only)

Note: This section discusses read-write access to the Subversion repository, which is only
available to users inside NCBI. For public access, see the section on read-only access.

Subversion client installation and usage instructions are available on separate pages for
UNIX, MS Windows, and Mac OS systems.

Retrieve the Source Code (FTP and Subversion)

http://anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++
http://anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++
http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c++
http://www.ncbi.nlm.nih.gov/viewvc/v1/trunk/c++
http://anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++
http://anonsvn.ncbi.nlm.nih.gov/repos/v1/trunk/c++

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

For a detailed description of the Subversion Version Control System please download the book
"Version Control with Subversion" or run the command svn help on your workstation for quick
reference.

The following is an outline of the topics presented in this section. Select the instructions
appropriate for your development environment.

* NCBI Source Tree Contents

+ Source Code Retrieval under Unix
— Retrieval of the C++ Toolkit Source Tree
4 Checking Out the Development NCBI C++ Toolkit Source Tree
Checking Out the Production NCBI C++ Toolkit Source Tree

svn core: Retrieving core components

import project: Retrieve Source for an Existing Project

update core: Update the Portable and Core Components

* & & ¢ o

update projects: Check out and Update Sources of Selected Projects

* Source Code Retrieval under MS Windows
* Source Code Retrieval under Mac OS X

NCBI Source Tree Contents

The NCBI C++ Toolkit Subversion repository contains all source code, scripts, utilities, tools,
tests and documentation required to build the Toolkit on the major classes of operating systems
(Unix, MS Windows and Mac OS).

Source Code Retrieval under Unix
Retrieval of the C++ Toolkit Source Code Tree

This section discusses the methods of checking out the entire source tree or just the necessary
portions. An important point to note is that the entire NCBI C++ tree is very big because it
contains a lot of internal projects. There are also numerous platform-specific files, and even
platform-specific sub-trees, which you will never need unless you work on those platforms.
Therefore it is frequently sufficient, and in fact, usually advisable, to retrieve only files of
interest using the shell scripts from the path (it is in the default SPATH):

/am/ncbiapdata/bin
They can also be checked out directly from the Subversion repository at:
https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/scripts/common

The auxiliary script svn_core checks out only the core NCBI C++ Toolkit sources for a desired
platform. A similar auxiliary script, import_project, can be used to import the source from a
single project. To facilitate the creation of a new project, use the script new_project which
generates new directories and makefiles for the new project from templates. This script also
checks out a specified sample application from the source tree that may be adapted for the new
project or built directly as a demonstration.

Checking out the whole Toolkit source tree using a Subversion client can take 15 minutes or
more. However, the script svn_toolkit_tree (available to NCBI users via the default PATH on
most UNIX hosts) produces the same result in only 10-30 seconds. The svn_toolkit tree script
combines a daily archive with an update of the working copy to bring it up-to-date. This

Retrieve the Source Code (FTP and Subversion)

http://svnbook.red-bean.com/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

produces the same set of files and revisions as running svn checkout, but in much less time.
Besides speed, the differences between using a Subversion client and the svn_toolkit tree script
include:

« Thesvn_toolkit_tree script may not be compatible with your Subversion client. If your
client is older than the version used to create the archive, you may not be able to access
the archive.

« The svn_toolkit_tree script requires that your current directory does not contain a
subdirectory with the name that the script is about to create (see below for the
subdirectory names created by the script).

There are three archives currently available:
* trunk
* trunk-core
« production

which correspond to the following flavors of the C++ Toolkit trees:
* https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++
+ https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++

* https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/candidates/production. HEAD/
ct++

which the script will deploy to the local subdirectory named, respectively:
+ toolkit-trunk/
+ toolkit-trunk-core/
+ toolkit-production/

For example, to retrieve the current TRUNK version of the "core" part of the C++ Toolkit tree
(the part without the GUI and INTERNAL projects), run:

$ svn_toolkit tree trunk-core
/net/snowman/vol/projects/ncbisoft/toolkit trees/trunk-core.tar.gz ->
toolkit-trunk-core/

Updating toolkit-trunk-core/...

$ 1ls toolkit-trunk-core/

compilers configure doc include scripts src

Checking Out the Development NCBI C++ Toolkit Source Tree

You can check out the entire development NCBI C++ source tree from the repository to your
local directory (e.g., foo/c++/) just by running:

cd foo

svn checkout https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++
For internal projects use:

cd foo

svn checkout https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++

Caution: Be aware that sources checked out through the development source tree have the latest
sources and are different from the public release that is done at periodic intervals. These sources

Retrieve the Source Code (FTP and Subversion)

https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++
https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++
https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/candidates/production.HEAD
https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/candidates/production.HEAD

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

are relatively unstable "development" sources, so they are not guaranteed to work properly or
even compile. Use these sources at your own risk (and/or to apply patches to stable
releases).The sources are usually better by the end of day and especially by the end of the week
(like Sunday evening).

Checking Out the Production NCBI C++ Toolkit Source Tree

Besides the development NCBI C++ source tree, there is the C++ Toolkit "production" source
tree that has been added to the public Subversion repository. This tree contains stable snapshots
of the "development" C++ Toolkit tree. Please note that these sources are lagging behind,
sometimes months behind the current snapshot of the sources.

You can check out the entire "production" NCBI C++ source tree from the public repository
to your local directory by running:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/latest/c++

This repository path corresponds to the latest production build of the Toolkit. If you want to
check out sources for an older production build, please specify the exact date of that build as
follows:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/20031212/c++

where 20031212 is the date when this specific build was originated. You can easily find out
the available production builds by running

svn ls https://svn.ncbi.nlm.nih.gov/repos/toolkit/production

This command will print directories under production/, which correspond to the production
builds.

svn_core: Retrieving core components

The NCBI C++ Toolkit has many features and extensions beyond the core of portable
functionality. However, one often wants to obtain a set of core sources that is free of non-
portable elements, and the svn_core script performs this task across the range of supported
platforms. Options to the basic command allow the developer to further tailor the retrieved
sources by including (or excluding) certain portions of the Toolkit.

For usage help, run svn_core without arguments.
Note: svn_core is not available on Windows.

Table 1 describes the arguments of svn_core. Only the target directory and SVN branch
arguments are mandatory.

Some directories are always checked out, regardless of command-line arguments. These are
shown in Table 2. (All paths are relative to the repository path https://svn.ncbi.nlm.nih.gov/
repos/toolkit/trunk/c++.)

Other directories may or may not be checked out, depending on the <branch> and <platform>
options. These are shown in Table 3.

Still other directories may be checked out depending on the --with/--without-<feature> options.
These are shown in Table 4.

Retrieve the Source Code (FTP and Subversion)

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

import_project: Retrieve Source for an Existing Project
Usage:

import project <SVN relative tree path> [builddir]

In many cases, you work on your own project which is a part of the NCBI C++ tree, and you
do not want to check out, update and rebuild the entire NCBI C++ tree. Instead, you just want
to use headers and libraries of the pre-built NCBI C++ Toolkit to build your project.

The shell script import_project will check out your project's src and include directories from
the repository and create temporary makefiles based on the project's customized makefiles.
The new makefiles will also contain a reference to the pre-built NCBI C++ Toolkit.

For example:
import project serial/datatool

will check out the datatool project from the NCBI C++ tree (trunk/c++/{src,include}/serial/
datatool/), and create a makefile Makefile.datatool app that uses the project's customized
makefile Makefile.datatool.app. Now you can just go to the created working directory c++/src/
serial/datatool/ and build the application datatool using:

make -f Makefile.datatool app

update_core: Update the Portable and Core Components

Usage:
update core [--no-projects] [<dirs>]

Once you have obtained the core C++ Toolkit sources, with svn_core or otherwise, the local
copies will become out of sync with the master SVN repository contents when other developers
commit their changes. update core will update your local core source tree with any changed
files without the side-effect of simultaneously checking out non-core portions of the tree.
Subdirectory */internal does not get updated by this script.

The --no-projects switch excludes any Windows or MacOS project files from the update.
Specifically, those subdirectory names of the form * prj are skipped during the update when
this flag is set.

The list [<dirs>], when present, identifies the set of directories relative to the current directory
to update. The default list of updated directories is:

« compilers

« doc

* include
* scripts
s src

Note that the default list is not pushed onto a user-supplied list of directories.

Retrieve the Source Code (FTP and Subversion)

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

update _projects: Check out and update Source of Selected Projects

Usage:

update projects <project-list> [<directory>]

Scriptupdate projects facilitates the original retrieval and subsequent updates of selected parts
of the Toolkit tree. Because the source code and makefiles are distributed over more than one
subdirectory under repository path trunk/c++, this script assembles the set of required files and
places them in your local C++ source tree.

The projects to be retrieved (or updated) must be specified in the command line as the <project-
list> parameter. Its value can be either of the following:

Explicit specification of the pathname of the project listing file. This project listing
file can contain project directory names as well as references to other project listings
and must be formatted according to the simple syntax used by the configure script.

Specify one of the standard project names. Standard projects are those whose project
listing files are located in one of the system directories, which are trunk/c++/scripts/
projects and trunk/c++/scripts/internal/projects. When a project name is specified on
the command line, the “.Ist” extension is added to it and the resulting file name is
searched for in the above mentioned system directories.

The parameter to update projects indicates the target directory where the sources will be
checked out to and where the project will be configured and built. This parameter is optional
and is set to the current directory by default.

Source Code Retrieval under MS Windows

1

In NCBI, the SVN clients must be set up and ready to use. Ask Systems if you don’t
have the client installed on your workstation. If you are working outside of NCBI,
then you can download the latest version of Subversion from http://
subversion.tigris.org/servlets/ProjectDocumentList?folderID=91. Run the
Subversion installer and follow the instructions. The latest version may not come with
an executable installer though. In this case, please unpack the zip archive with the
latest Subversion binaries to a local directory, for example C:\Program Files\svn-
win32-1.4.2. Change the PATH environment variable so that it points to the bin
subdirectory under your Subversion installation directory, for example set PATH=%
PATH%;C:\Program Files\svn-win32-1.4.2\bin

Start your favorite command shell. Change current directory to the designated
working directory. Atthe command prompt, type:svn co https://svn.ncbi.nlm.nih.gov/
repos/toolkit/trunk/c++

Modify source files as required. Refer to Svnbook for the documentation on particular
Subversion commands. Monitor your changes using svn diff, synchronize your
working copy with the trunk using svn update, and finally commit them using svn
commit.

The rest should be the same as when using Subversion under UNIX systems. See Source Code
Retrieval under Unix.

Source Code Retrieval under Mac OS X

Download and install the latest Subversion binaries for MacOSX from http://
subversion.tigris.org/.

Retrieve the Source Code (FTP and Subversion)

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://svnbook.red-bean.com
http://subversion.tigris.org
http://subversion.tigris.org

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

The rest should be the same as when using Subversion under UNIX systems. See Source Code
Retrieval under Unix.

Source Tree Structure Summary

To summarize the Getting Started page, the source tree is organized as follows:

+ The top-level has configuration files and the directories include/, src/, scripts/,
compilers/ and doc/

* The src and include directories contain "projects” as subdirectories. Projects may
contain sub-projects in a hierarchical fashion.

+ src/ additionally contains makefile and meta-makefile templates.

+ Projects contain "modules" and various customized makefiles and meta-makefiles to
control their compilation.

Retrieve the Source Code (FTP and Subversion)

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 1. svn_core Arguments

Page 9

Argument Description Permitted Values

<dir> Path to where the source tree A valid writable directory name (must not exist already); name cannot start with "-".
will be checked out. This
argument is required.

<branch> Which branch of the source tree | core - toolkit/trunk/c++
to check out. This argumentisr | development - toolkit/trunk/internal/c++
equired. production - toolkit/production/candidates/trial/c++

prod-head - toolkit/production/candidates/production. HEAD/c++
frozen-head - toolkit/production/candidates/frozen. HEAD/c++
trial - toolkit/production/candidates/trial/c++

release - toolkit/release/public/current/c++

gbench - gbench/branches/1.1

gbench?2 - gbench/trunk

(See ct++-branches.txt for an up-to-date list of branches.)

--date Check out as at the start of the A date in a format acceptable to the svn -r argument, for example --date="2013-03-29
specified timestamp. If the -- 19:49:48 +0000". (Do not include curly braces and quote the timestamp if it contains
date flag is missing, today’s date | spaces.) See the Revision Dates section in the Subversion manual for details.
and current time are used.

--export Get a clean source tree n/a
without .svn directories.

--<platform> Obtain sources for the specified | --unix - Unix systems;

platform(s).

--msvc - Microsoft Visual C++ environment;

--mac - Macintosh systems;

--cygwin - Cygwin UNIX environment for Windows;
--all - all platforms.

If no value is supplied, --all is used.

--with-ctools

Check out core projects
responsible for working
together with the NCBI C
Toolkit (the ctools directory).
This option is effective by
default unless --without-ctools
is used.

n/a

--without-ctools

Do not check out core projects
responsible for working
together with the NCBI C
Toolkit (the ctools directory).

--with-gui

Check out core projects
responsible for providing cross-
platform graphic user interface
capability (the gui directory).
This option is effective by
default unless --without-gui is
used.

n/a

--without-gui

No not check out core projects

responsible for providing cross-
platform graphic user interface

capability (the gui directory).

--with-internal

Check out a selection of NCBI-
internal core projects. See Table
4 for a detailed list of affected
directories.

n/a

--without-
internal

Do not check out NCBI-internal
core projects.

n/a

Retrieve the Source Code (FTP and Subversion)

https://svn.ncbi.nlm.nih.gov/viewvc/toolkit/trunk/internal/scripts/build/c%252B%252B-branches.txt?view=markup
http://svnbook.red-bean.com/en/1.6/svn.tour.revs.specifiers.html#svn.tour.revs.dates

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 10

--with-objects

Check out the objects, objmgr,
and objtools directories and
generate serialization code from
the ASN.1 specifications. If this
flag is not present, those
directories are still checked out
(unless overridden by the --
without-objects flag) but no
serialization code is generated.

n/a

--without-objects

Do not check out the objects,
objmgr, and objtools directories
or generate ASN.1 serialization
code. (On Unix platforms the
code generation can be done
later, during the build.)

n/a

Retrieve the Source Code (FTP and Subversion)

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 2. List of the directories that are always checked out

Checked out directories Recursive?
(include|src) no
(include|src)/algo yes
src/app yes
src/build-system yes
(include|src)/cgi yes
include/common yes
(include|src)/connect no
(include|src)/connect/ext yes
include/connect/impl yes
src/connect/test yes
(include|src)/connect/services | yes
(includelsrc)/corelib yes
(include|src)/db yes
(include|src)/dbapi yes
(include|src)/html yes
(include|src)/misc yes
(include|src)/sample yes
(include|src)/serial yes
include/test yes
(include|src)/util yes
scripts yes

Retrieve the Source Code (FTP and Subversion)

Page 11

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 3. Directories that may be checked out depending on branch and platform options

Checked out directories | Recursive? | Options

compilers yes <platform> = all

compilers no <platform> != all
compilers/cygwin yes <platform> = cygwin
compilers/msvc1000_prj | yes <platform> = msvc
compilers/unix yes <platform> = cygwin or mac or unix
compilers/xCode yes <platform> = max
compilers/xcode90_prj yes <platform> = mac

doc yes <branch> = development
include/connect/daemons | yes <platform> = all or unix
src/check yes <platform> != mac
src/connect/daemons yes <platform> = all or unix
src/connect/mitsock yes <platform> = mac

sre/dll yes <platform> = all or mac or msvc

Retrieve the Source Code (FTP and Subversion)

Page 12

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 4. Directories that may be checked out depending on --with/--without options

Checked out directories

Recursive? | Options

(includelsrc)/ctools yes --with-ctools or not --without-ctools
(include|src)/gui yes --with-gui or not --without-gui
(include|src)/internal no --with-internal
(include|src)/internal/algo no --with-internal
(include|src)/internal/algo/id _mapper yes --with-internal
(include|src)/internal/align_model yes --with-internal
include/internal/asn_cache yes --with-internal

src/internal/asn_cache no --with-internal
src/internal/asn_cache/lib yes --with-internal
(include|src)/internal/blast no --with-internal
(include|src)/internal/blast/DistribDbSupport | yes --with-internal
(include|src)/internal/contigdb no --with-internal

src/internal/demo yes --with-internal
(include|src)/internal/ID no --with-internal
(include|src)/internal/ID/utils no --with-internal
(include|src)/internal/mapview no --with-internal
(include|src)/internal/mapview/objects yes --with-internal
(include|src)/internal/mapview/util yes --with-internal
(include|src)/internal/myncbi yes --with-internal
include/internal/objects no --with-internal

(include|src)/objects yes --with-objects or not --without-objects
(include|src)/objmgr yes --with-objects or not --without-objects
(include|src)/objtools yes --with-objects or not --without-objects
src/internal/objects yes --with-internal
(include|src)/internal/sra yes --with-internal

src/internal/test yes --with-internal
(include|src)/internal/txclient yes --with-internal
(include|src)/internal/txserver yes --with-internal
(include|src)/internal/txxmldoc yes --with-internal

Retrieve the Source Code (FTP and Subversion)

Page 13

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

4: Configure, Build, and Use the Toolkit

Last Update: July 18, 2013.

Overview
The overview for this chapter consists of the following topics:
+ Introduction

« Chapter Outline

Introduction

This chapter describes in detail how to configure, build, and use the NCBI C++ Toolkit (or selected
components of it) on supported platforms. See the Getting Started chapter for a general overview
of the process. A list of all supported platforms can be seen here.

Note: Users insde NCBI who just want to use the Toolkit don't need to configure and build it -
there are various configurations of the Toolkit prebuilt and ready to use. See the new_project
script for more information.

Configuring is the process of creating configuration files that define exactly what can be built and
what options may be used in the build process. The created configuration files include C headers
that define suitable preprocessor macros, as well makefiles (for UNIX) or project solutions (for
MS Visual C++ or for Xcode) used in the build step.

With some compilers that include an Integrated Development Environment (e.g. MS Visual C+
+), a top-level build target, called CONFIGURE, is available. On UNIX-like systems it is
necessary to execute a configuration script configure — sometimes via a special wrapper script
that first performs some platform-specific pre-configuration steps and then runs the configuration
process.

The configuration process defines the set of targets that can be built. It is up to the user to choose
which of those targets to build and to choose the desired build options. For more details on the
build system and the Makefiles created by the configuration process, see the chapter on Working
with Makefiles.

Successful builds result in immediately usable libraries and applications, and generally there is
no need for a separate installation step on any platform.

In addition to building the Toolkit libraries and applications, this chapter also discusses building
test suites and sample applications. You might want to build and run a test suite if you are having
trouble using the Toolkit and you aren’t sure if it is working properly. While it isn’t necessary to
build a test suite to use the Toolkit, it can be useful for ensuring that the Toolkit has been properly
configured and built. Building a sample application may be a good first step toward learning how
to build your own applications.

Chapter Outline

General Information for All Platforms

* Choosing a Build Scope

— Reducing Build Scope with Project Tags
» Configure the Build

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

— Site-Specific Third Party Library Configuration

— Configuring with the Configuration GUI
+ Use the Toolkit
* Supported Platforms
UNIX
+ General Information for UNIX Platforms
— Choosing a Build Scope with UNIX
— Configuring with UNIX
— Building with UNIX
— Using the Toolkit with UNIX
+ Special Considerations for Specific UNIX Platforms
— Linux /ICC
— Cygwin/ GCC
MS Windows
* MS Visual C++
— Choosing a Build Scope with Visual C++

— Configuring with Visual C++
— Building with Visual C++
— Using the Toolkit with Visual C++
+ Cygwin/GCC
Mac OS X
+ Xcode 3.0, 3.1
— Choosing a Build Scope with Xcode 3.0 or Later

— Configuring with Xcode 3.0 or Later
— Building with Xcode 3.0 or Later
* Xcode 1.0,2.0
— Build the Toolkit
— The Build Results
+ Darwin / GCC
» Code Warrior (discontinued as of April 30, 2006)

Page 2

General Information for All Platforms

Using the Toolkit on any platform requires these basic high-level steps:

* Prepare the development environment.

* Get the source files from NCBI and place them in your working directory.

* Choose a build scope.
* Configure the build.
* Build.

+ Use the Toolkit from your application.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

Choosing a Build Scope

After preparing the development environment, you'll need to choose a build scope. Choosing
a build scope means deciding whether you want to build the entire Toolkit or just some portion
of it. The build system includes methods on most platforms for building pre-defined scopes,
such as just the core libraries and applications, the Genome Workbench, pre-defined lists of
one or more projects, etc. Choosing a build scope must be done before configuring on some
platforms. On other platforms it can be done either before or after configuring. See the section
for your platform for more details on pre-defined build scope choices.

Reducing Build Scope with Project Tags

The pre-defined build scopes mentioned above may be unnecessarily broad for your task. You
can reduce the build scope by using project tags.

There are two complementary parts to using project tags. First, project tags are defined and
associated with selected projects. Second, a tag filter is supplied to the configuration process.
The configuration process then filters the list of projects that will be built, based on each
project's tags and the supplied tag filter.

An important benefit of using project tags is that all dependencies for the projects that match
the tag filter will be automatically deduced and added to the build list.

Defining Project Tags

All project tags must be defined in src\build-system\project tags.txt prior to use. Tag names
should be easily recognizable and classifiable, like ‘proj[subproj]’, e.g. “pubchem” or
“pubchem_openeye”.

Once defined in project_tags.txt, project tags can then be associated with any number of
projects by using the PROJ_TAG macro in the Makefile.in or Makefile.*. {app|lib} for the
selected projects. Project tag definitions apply recursively to subprojects and subdirectories
(similar to a REQUIRES definition), thereby removing the need to define tags in all makefiles
in a subtree. Subprojects may define additional tags, or undefine inherited tags by prefixing a
hyphen '-' to the tag.

The syntax for defining (or undefining) a project tag is:

PROJ TAG = [-]mytagl [[-]Imytag2...]

For example, if Makefile.in has this line:

PROJ TAG = foo bar

and a project beneath it in the tree hierarchy (say Makefile.*.app) has this line:

PROJ TAG = xyz -bar

then the latter project's effective tag definition is:

PROJ_TAG = foo xyz

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

Filtering with Project Tags

A tag filter can be constructed from one or more project tags — either as a single tag or as a
Boolean expression of tags. Boolean expressions of tags can include grouping (parentheses)
and the '&&' (AND), '||" (OR), and "' (NOT) operators, for example: (core || web) && !test

Note: An asterisk '*' or an empty string can be used in place of a tag filter in the "Allowed
project tags" field on the Configuration tab of the configuration GUI. These values are not
filters, but simply indicate that all projects in the build scope will be passed to the configuration
process without filtering.

The following places are searched in the order given for the tag filter to use (if any) in the
configuration process:

1 The "Allowed project tags" field in the configuration GUI (if the configuration GUI
is being used).

2 A tag filter definition line in a project list file (if one is being used).

a To use a project list file for configuration, either specify the project list file
in the "Subtree, or LST file" field on the Configuration tab of the
configuration GUI or use the --with-projects=FILE argument for the
configure script.

b When one project list file includes another, only the original will be scanned
for a filter. This applies to both interactive (i.e. with the configuration GUI)
and non-interactive configuring.

¢ The syntax for the tag filter definition line in a project list file is: #define
TAGS [tag_filter |

3 For MSVC, the -projtag option of the PTB_ FLAGS macro in the compilers
\msvc1000_prj\static\build\UtilityProjects\configure. file for non-interactive
configuring, or the same option in the configure dialog. file for interactive
configuring.

If a significant tag filter (i.e. something besides an asterisk or empty field) is found in one of
the above places, then that tag filter will be supplied to the configuration process. Otherwise,
there will be no filtering of the projects.

Configure the Build

Prior to configuring, users outside NCBI should make sure the paths to their third party libraries
are correctly specified.

For the configuration step you can specify whether to use static or dynamically-linked libraries;
whether to generate multithread-safe code; whether to look for various third-party libraries at
alternative locations; whether or not to include debugging information; etc.

Configuration can be done in one of three ways:
+ Using the Configuration GUI.
+ Using a "native" IDE — MSVC on Windows or Xcode on Mac OS X.
+ Using the command-line on UNIX, Cygwin/Windows, or Mac OS X.

Site-Specific Third Party Library Configuration

Users outside NCBI should check the file src/build-system/config.site to see if it correctly
specifies the paths to their third party libraries. If not, it can be edited using src/build-system/
config.site.ex as a guide.

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

Note: The configure --with-PACKAGE options take precedence over the config.site and
PACKAGE PATH settings.

Using the Configuration GUI

The configuration GUI can be launched from a command shell or from an IDE (MSVC or
Xcode). It is Java-based and requires the Java Platform Standard Edition.

The following sections describe how to use the configuration GUI:
+ Starting the configuration GUI
+ Configuration tab
* Advanced tab
+ Third party libraries tab

* Projects tab
* Done tab

See the UNIX, Windows, and Mac OS X sections for OS-specific configuration information.

Starting the configuration GUI

To launch the configuration GUI:
+ From the command-line: ./configure --with-configure-dialog
* From the MSVS IDE: build the -CONFIGURE-DIALOG- project
+ From the Xcode IDE: build the CONFIGURE-DIALOG target

The configuration GUI has a "Wizard" style design — selections are made in a sequence of
steps, followed by clicking the Next button. After each step additional tabs may be enabled,
depending on the specific data. It opens with initial values set by the invoking program (the
configure script for command-line invocation or the project_tree builder program for IDE's).

Configuration tab
The Configuration tab looks like:

Configure, Build, and Use the Toolkit

http://www.java.com/

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 6

The Toolkit configuration parameters i] |

f{:onﬁguraﬂon | Advanced | 3rd party libraries [Projects | Done |

@ Static
Build libraries as
) Dynamic
Subtree, or LST file |src‘. |

* |

Allowed project tags

Load from file... | Reset

Originally loaded from

version 1.0 Next H Cancel |

The Configuration tab allows you to:
* Choose between static and dynamically-linked libraries.

+ Specify the subset of the Toolkit that you want to build, using either a path for a subtree
(e.g. src\) or a project list file (*.Ist) for specific projects. Clicking on the "..." button
opens a file selection dialog, which can be used to navigate to the desired subtree or
to select a project list file.

» Specify one or more project tags (which will restrict the scope of the build to the
specified projects). Clicking on the "..." button simply displays the valid choices for
project tags (it isn't used for selecting tags). More than one project tag can be combined
in a Boolean expression, for example:

(code || web) && !test

+ Loadaconfiguration from a file. This requires having previously saved a configuration,
from the Done tab. If you load a configuration from a file, the file path is shown in the
"Originally loaded from" text field and the Reset button becomes enabled. Clicking
the Reset button resets all configuration settings to the values that were used to invoke
the configuration GUI.

Advanced tab
The Advanced tab looks like:

Configure, Build, and Use the Toolkit

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 7

The Toolkit configuration parameters i] |
Configuration | Advanced | 3rd party libraries [Projects | Done |
Target IDE a00
Target architecture Win3z2
Solution to generate |samp|e |
Look for missing libraries in this tree |1.1.snnwmamwin-cnremakelLibINcbiIC}(}(_TnnIkiﬂmsvcEIm.currenﬂlimstaﬂ

maore =

version 1.0 | Next H Cancel |

The Advanced tab allows you to:

* View the current version of the IDE (currently only applicable to Windows / Microsoft
Visual Studio).

* View the current architecture (currently only applicable to Windows / Microsoft Visual
Studio).

» Specify the name of a solution file to generate. You can use this to create different
solution files for different configurations.

* Specify where to look for missing libraries. This can be used to change the build — for
example, from cxx.current to cxx.potluck.

In addition, by clicking "more" you will see:

Configure, Build, and Use the Toolkit

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 8

The Toolkit configuration parameters i] |

Configuration | Advanced | 3rd party libraries [Projects | Done |

Target IDE a00

Target architecture Win3z2

Solution to generate |samp|e |
Look for missing libraries in this tree |1.1.snnwmamwin-cnremakelLibINcbiIC}(}(_TnnIkiﬂmsvcEIm.currenﬂlimstaﬂ

< less

Exclude "Build PTB' step from CONFIGURE project
Do not scan the whole source tree for missing project dependencies

Use external libraries instead of missing in-tree ones

Project tree builder |1.15n0wman1.win-coremakel&pmNcbhcppcore\ptmmsvc@.?.Eﬂpro]ecﬂ
Source root |C:1.tesﬂsample |
version 1.0 Next | ‘ Cancel |

These additional options generally don't need to be changed, but they allow you to:

+ Exclude the "Build PTB" step from the configure process. This should be selected if
the PTB (project tree builder) source is not available. Even if the PTB source is
available, it usually makes sense to exclude building the PTB because building it will
take longer and generally won't have a benefit.

* Prevent whole-tree scanning for missing project dependencies. A project dependency
may be missing if, for example, import_project was used and the configuration was
changed to something other than simply Debug or Release (e.g. DebugMT).

« Use external libraries instead of missing in-tree ones.

« Select a different project tree builder. In most cases this won't be needed, but it could
be useful for tasks such as debugging the build system.

» Select a different location to use as the root of the source tree.

Third party libraries tab
The Third party libraries tab looks like:

Configure, Build, and Use the Toolkit

300g IY[001 ++D 19ON 8UL

Page 9

The Toolkit configuration parameters i] |

f{jonﬂguration rnduanced |/ 3rd party libraries rPrDjects r Done |

Root directory of 3-rd party libraries |1.\sn0wman\win—coremake\LimThircIF'arty |
Path to the NCBI C Toolkit |1.\sn0wm anwin-coremake\Lib\NchiCimsveic.current |
Add VTune configurations: [] Release Debug

version 1.0 Next ‘ | Stop |

300g Y001 ++D 190N 8UL

300g Y001 ++D 190N 83Ul

The Third party libraries tab allows you to:
» Select a different location for third-party libraries.
+ Select a different location for the NCBI C Toolkit.

* Add VTune configurations. If selected, new VTune configurations will be added to
the list of available configurations — for example, VTune DebugDLL.

Projects tab
The Projects tab looks like:

EThe Toolkit configuration parameters O] x|

[Configuration | Advanced | 3rd party libraries | Projects | Done |

Applications ¢12/400) Libraries (227207 Other @/ H Tags
coretestexe - m [third_party_dIl_insta core
[] cpgdemo.exe L] cdd.lib '=| |[] third_party_msvedIl]
[]ctl_lang.exe = Ll en3dlib [] third_party_msvcstal || |
[] cobaltlib

[] atl_lang_ftds6d.exe
[] ctl_sp_databases.exe

[] third_party_static_in |[_] web
[| composition_adjus

- n
[] ctl_sp_databases_ftd B4 connectlib

[] al_sp_who.exe [connexclib

] atl_sp_who_ftds6d.e L] connssl.lib

E B creaders.lib E
4 i [»] 14 Il [»] q| Il | [»

| +all H -all ‘ | +all || -all ‘ | +all H -all |

version 1.0

Generate project || Stop ‘

Configure, Build, and Use the Toolkit

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 10

The Projects tab allows you to select exactly which applications and libraries will be built. If
an item is not selected, but at least one selected item depends on it, then it will also be built.
This provides a convenient way for developers to simply pick the top-level items to build.

The "-all" and "+all" buttons uncheck or check all the items in a column.

The Tags column allows you to quickly select all items having the selected project tag(s). Also,
selecting items in the other columns will update the selection status of the tags column.

Done tab
The Done tab looks like:

The Toolkit configuration parameters

[Configuration | Advanced | 3rd party libraries | Projects | Done |

=101

Configuration has completed successfully

Generated project file:

Ciatestisample\compilersimsvc800_prjdilibuildisample2

_dil.sln

‘ Save configuration parameters into a file... |

Start over

The Done tab:

Use the Toolkit

Reports whether the project was generated successfully.

Shows the path for the generated solution file.

Gives the option to save the configuration parameters. Once saved, the same

parameters can be loaded again from the Configuration tab.

Gives the option to start over and create a new set of configuration parameters.

Gives the option to close the tool, via the Finish button. Closing the tool will return
you to the configuration process, which will continue based on the parameters set in

the configuration GUI.

After choosing a build scope, configuring, and building the Toolkit, you can now use it. The
Toolkit itself includes useful applications, demo programs, and sample code — in addition to
the libraries you can use from your own applications. You can also build a suite of test

applications and/or sample applications if desired.

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 11

Supported Platforms

UNIX

The term “platform” in this chapter has a specific meaning: the combination of operating
system, architecture, and compiler. A supported platform is one for which the Toolkit has been
configured, built, tested, and used by other applications.

The list of supported platforms may change with new releases. For the platforms supported in
the release you are using, see the Supported Platforms section in the release notes. Note that
some platforms are only partially supported.

Note: Please also see the General Information for All Platforms section, as it contains relevant
information that is not repeated here.

This section covers the following topics:

» General Information for UNIX Platforms

— Choosing a Build Scope
— Configuring
— Building
— Using
» Special Considerations for Specific UNIX Platforms
— Linux /ICC

— Cygwin/ GCC

General Information for UNIX Platforms

This section provides information on configuring, building, and using the Toolkit that is
applicable to all UNIX platforms. The section Special Considerations for Specific UNIX
Platforms addresses platform-specific details.

Note, however, that the sections on specific platforms do not address the level of support for
specific compilers. See the Supported Platforms section in the release notes for information on
partially supported compilers.

The following topics are discussed in this section:

* Choosing a Build Scope

+ Configuring
— Configuration Script configure

— Structure of the Build Tree Produced by configure

— Options for Fine-Tuning the configure Script
— Quick Reconfiguration
* Building
— General Principles for Building with UNIX
— Building Only Core Libraries and Applications

— Building GUI Libraries and Applications
— Building the Genome Workbench
— Building the Entire Toolkit

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 12

« Usin
— Modify or Debug an Existing Toolkit Application
— Modify or Debug an Existing Toolkit Library

Choosing a Build Scope with UNIX

The Toolkit is very large and you may not want to retrieve and build the entire Toolkit if you
don’t need to. Therefore, after preparing the development environment and getting the source
files, you'll need to choose a build scope. Several mechanisms are provided to enable working
with only a portion of the Toolkit.

The first thing you can do is to limit the source code retrieved from the repository:
+ using the shell script import project; or
+ using the shell script update projects.
Next, you can limit what is built:
* by configuring with the --with-projects option; or
+ by running make only within directories of interest; or
* Dby building only a selected list of end targets using flat makefile

You can also choose between static and shared libraries - or build both. Building with static
libraries will result in much larger applications and require much more disk space.

Configuring with UNIX

The following topics are discussed in this section:

» Configuration Script configure

» Structure of the Build Tree Produced by configure

+ Options for Fine-Tuning the configure Script
— Getting a Synopsis of Available Configuration Options

— Debug vs. Release Configuration

— Multi-Thread Safe Compilation and Linking with MT Libraries
— Building Shared Libraries (DLLs)

— Finer-grained Control of Projects: --with-projects

— Building in the 64-bit mode

— Localization for the System and Third-Party Packages

— Naming the Build Tree

— Hard-Coding Run-Time DLL Path into Executables and DLLs
— Automatic Generation of Dependencies (for GNU make Only)
— After-Configure User Callback Script

— Tools and Flags
— Prohibiting the Use of Some of the System and Third-party Packages

— Optional Projects
— Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

* Quick Reconfiguration

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 13

Configuration Script configure

Different build setups compile C++ (and even C!) code differently; they may vary in the OS
standard and 3"-party libraries and header files, completeness of the C++ implementation, and
in compiler bugs. There are also different versions of make and other tools and different file
naming conventions on different platforms.

Thus, configuration is needed to use the platform- and compiler-specific features. For this
purpose, we are using a script produced by the GNU autoconf utility to automatically generate
the build-specific header file ncbiconf.h and makefiles that would work for the given platform.

The user performs configuration by merely running platform-independent (s4, bash) shell
script configure (which we pre-generate in-house from the template configure.ac using
autoconf).

During the configuration process, many compiler features are tested, and the results of this
testing are recorded in the configuration header ncbiconf.h by the means of C preprocessor
variables. For example, the preprocessor variable NO _INCLASS TMPL indicates whether
the compiler supports template class methods. Also contained in the ncbiconf.h file are
preprocessor variables used to define sized integer and BigScalar types.

The configure script will create a build tree, a hierarchy of directories where object modules,
libraries, and executables are to be built. It will also configure all *.in template files located in
the NCBI C++ source tree (src/) and deploy the resultant configured files in the relevant places
of the build tree. This way, all platform- and compiler-specific tools and flags will be "frozen"
inside the configured makefiles in the build tree. The ncbiconf.h (described above, also
configured for the given compiler) will be put to the inc/ sub-directory of the resultant build
tree.

You can create as many build trees as needed. All build trees refer to the same source tree, but
contain their own platform/compiler-specific ncbiconf.h header and/or different set of
compilation/linking flags and tools ("frozen" in the makefiles, particularly in Makefile.mk).
This allows building libraries and executables using different compilers and/or flags, yet from
the same source, and in a uniform way.

A configuration tool with a Java-based GUI is also available and can be launched from the
command-line:

./configure --with-configure-dialog

Additional parameters can also be passed to configure, just as without the configuration GUI.

For more information on using the configuration GUI, see the general section on
configuring.

Structure of the Build Tree Produced by configure

Each configuration process results in a new build tree. The top-level directories in the tree are:
inc/ - contains the ncbiconf.h configuration header generated by the configure script.

build/ - contains a hierarchy of directories that correspond to those in the src/ (in NCBI C++
original sources). These directories will contain makefiles (Makefile.*) generated by the
configure script from the makefile templates (Makefile.*.in) of the corresponding project
located in the source tree. The resultant scripts and makefiles will keep references to the original

Configure, Build, and Use the Toolkit

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 14

NCBI C++ source directories. There is a "very special” file, Makefile.mk, that contains all
configured tools, flags, and local paths. This file is usually included by other makefiles. All
build results (object modules, libraries, and executables, as well as any auxiliary files and
directories created during the build) will go exclusively into the build tree and not to the original
NCBI C++ source directories. This allows for several build trees to use the same source code
while compiling and linking with different flags and/or compilers.

lib/ - contains the libraries built by the build/-located projects.
bin/ - contains the executables built by the build/-located projects.

status/ - contains:
« config.cache, a cache file;
+ config.log, a log file;
« config.status, a secondary configuration script produced by configure;
« * enabled files, with package and feature availability; and

« *.dep files, with timestamps of the built Toolkit libraries.

Options for Fine-Tuning the configure Script

The configure script is highly customizable. The following sections describe some of the
configuration options:

* Getting a Synopsis of Available Configuration Options

+ Debug vs. Release Configuration

* Multi-Thread Safe Compilation and Linking with MT Libraries
+ Building Shared Libraries (DLLs)

+ Finer-grained Control of Projects: --with-projects

+ Building in the 64-bit mode

« Localization for the System and Third-Party Packages

+ Naming the Build Tree

* Hard-Coding Run-Time DLL Path into Executables and DLLs
+ Automatic Generation of Dependencies (for GNU make Only)
« After-Configure User Callback Script

+ Tools and Flags
* Prohibiting the Use of Some of the System and Third-party Packages

* Optional Projects
* Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

To get the full list of available configuration options, run ./configure --help. The NCBI-specific
options are at the end of the printout.

Note: Do not use the "standard" configure options listed in the "Directory and file names:"
section of the help printout (such as --prefix=, --bindir=, etc.) because these are usually not
used by the NCBI configure script.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 15

The following two configure flags control whether to target for the Debug or Release version.
These options (the default being --with-debug) control the appearance of preprocessor flags -
D DEBUG and -DNDEBUG and compiler/linker flags -g and -O, respectively:

--with-debug -- engage -D_DEBUG and -g, strip -DNDEBUG and -O (if not --with-
optimization)

--without-debug -- strip -D_DEBUG and -g, engage -DNDEBUG and -O (if not --without-
optimization)

--with-optimization -- unconditionally engage -DNDEBUG and -O
--without-optimization -- unconditionally strip -DNDEBUG and -O

default: --with-debug --without-optimization

--with-mt - compile all code in an MT-safe manner; link with the system thread library.
--without-mt - compile with no regard to MT safety.

default: --without-mt

On the capable platforms, you can build libraries as shared (dynamic).

--with-dll --with-static -- build libraries as both dynamic and static; however, if the library
project makefile specifies LIB_ OR_DLL = lib, then build the library as static only, and if the
library project makefile specifies LIB_OR_DLL = dll, then build the library as dynamic only.
Note that the resulting static libraries consist of position-independent objects.

--with-dll -- build libraries as dynamic; however, if the library project makefile specifies
LIB OR_DLL = lib, then build the library as static

--without-dll -- always build static libraries, even if the library project makefile specifies
LIB OR DLL =dll

default: build libraries as static (albeit with position-independent code); however, if the library
project makefile specifies LIB_OR_DLL = dll, then build the library as dynamic

If the above options aren't specific enough for you, you can also tell configure which projects
you want to build by passing the flag --with-projects=FILE, where FILE contains a list of
extended regular expressions indicating which directories to build in. With this option, the
make target all_p will build all selected projects under the current directory. If there is a project
that you want to keep track of but not automatically build, you can follow its name with "update-
only". To exclude projects that would otherwise match, list them explicitly with an initial
hyphen. (Exclusions can also be regular expressions rather than simple project names.) If no
FILE argument is supplied then configure expects to find a project list file named "projects"
in the top-level c++ directory.

For instance, a file containing the lines
corelibs$

util

serial

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 16

-serial/test

test update-only

would request a non-recursive build in corelib and a recursive build in util, and a recursive
build in serial that skipped serial/test. It would also request keeping the test project up-to-date
(for the benefit of the programs in util/test).

Note: The flags listed above still apply; for instance, you still need --with-internal to enable
internal projects. However, update _projects can automatically take care of these for you; it will
also take any lines starting with two hyphens as explicit options.

Project list files may also define a project tag filter, with the syntax:

#define TAGS [tag filter]

See the section on filtering with project tags for more information.

--with-64 - compile all code and build executables in 64-bit mode.

default: depends on the platform; usually --without-64 if both 32-bit and 64-bit build modes
are available.

There is some configuration info that usually cannot be guessed or detected automatically, and
thus in most cases it must be specified "manually" for the given local host's working
environment. This is done by setting the localization environment variables (see Table 2) in
addition to the "generic" ones (CC, CXX, CPP, AR, RANLIB, STRIP, CFLAGS, CXXFLAGS,
CPPFLAGS. LDFLAGS, LIBS).

On the basis of Table 2, configure will derive the variables shown in Table 3 to use in the
generated makefiles.

Note: The file src/build-system/config.site may also be edited to simplify localization of third
party libraries, especially for users outside NCBI.

The configuration process will produce the new build tree in a subdirectory of the root source
directory. The default base name of this subdirectory will reflect the compiler name and a
Release/Debug suffix, e.g., GCC-Release/. The default build tree name can be alternated by
passing the following flags to the configure script:

--without-suffix - do not add Release/Debug, M T, and/or DLL suffix(es) to the build tree name.
Example: GCC/ instead of GCC-ReleaseMT/

--with-hostspec - add full host specs to the build tree name. Example: GCC-Debug--i586-pc-
linux-gnu/

--with-build-root=/home/foo/bar - specify your own build tree path and name.

With --with-build-root=, you still can explicitly use --with-suffix and --with-hostspec to add
suffix(s) to your build tree name in a manner described above.

Example: --with-build-root=/home/foo/bar--with-mt --with-suffix would deploy the new build
tree in /home/foo/bar-DebugMT.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 17

There is also a special case with "--with-build-root=." for those who prefer to put object files,
libraries, and executables in the same directory as the sources. But be advised that this will not
allow you to configure other build trees.

To be able to run executables linked against dynamic libraries (DLLs), you have to specify the
location (runpath) of the DLLs. It can be done by hard-coding (using linker flags such as-
R.....) the runpath into the executables.

--with-runpath - hard-code the path to the /ib/ dir of the Toolkit build tree.
--with-runpath=/foo/bar - hard-code the path to the user-defined /foo/bar dir.
--without-runpath - do not hard-code any runpath.

default: if --without-dll flag is specified, then act as if --without-runpath was specified,
otherwise, engage the --with-runpath scenario.

The makefile macro ncbi_runpath will be set to the resulting runpath, if any.

Note: When running an executable you also can use environment variable
$LD LIBRARY PATH to specify the runpath, like this:

env LD LIBRARY PATH="/home/USERNAME/c++/WorkShop6-ReleaseDLL/1lib" \
/home/USERNAME/c++/WorkShop6-ReleaseDLL/bin/coretest

HINT: The --with-runpath=.... option can be useful to build production DLLs and executables,
which are meant to use production DLLs. The latter are usually installed not in the lib/ dir of
your development tree (build tree) but at some well-known dir of your production site. Thus,
you can do the development in a "regular" manner (i.e., in a build tree configured using only
--with-runpath); then, when you want to build a production version (which is to use, let's say,
DLLs installed in "/some_path/foo/ "), you must reconfigure your C++ build tree with just the
same options as before, plus "--with-runpath=/some_path/foo". Then rebuild the DLLs and
executables and install them into production. Then re-reconfigure your build tree back with its
original flags (without the "--with-runpath =/some_path/foo ") and continue with your
development cycle, again using local in-tree DLLs.

--with-autodep - add build rules to automatically generate dependencies for the compiled C/C
++ sources.

--without-autodep - do not add these rules.

default: detect if the make command actually calls GNU make; if it does, then --with-
autodep, else --with-autodep

Also, you can always switch between these two variants "manually", after the configuration is
done, by setting the value of the variable Rules in Makefile.mk to either rules or
rules_with_autodep.

Note: You must use GNU make if you configured with --with-autodep, because in this case
the makefiles would use very specific GNU make features!

You can specify your own script to call from the configure script after the configuration is
complete:

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 18

--with-extra-action="<some_action>"

where <some_action> can be some script with parameters. The trick here is that in the
<some_action> string, all occurrences of "{}" will be replaced by the build dir name.

Example:

configure --with-extra-action="echo foobar {}"
will execute (after the configuration is done):

echo foobar /home/user/c++/GCC-Debug

There is a predefined set of tools and flags used in the build process. The user can customize
these tools and flags by setting the environment variables shown in Table 1 for the
configure script. For example, if you intend to debug the Toolkit with Insure++, you should
run configure with CC and CXX set to insure.

Later, these tools and flags will be engaged in the makefile build rules, such as:
* To compile C sources: $(CC) -¢c $(CFLAGS) $(CPPFLAGS)....
* To compile C++ sources: $(CXX) -¢ $(CXXFLAGS) $(CPPFLAGS)....

+ To compose a library: $(AR) libXXX.a xxx1.0 xxx2.0 xxx3.05(RANLIB)
libXXX.a

« To link an executable: $(LINK) $(LDFLAGS) $(LIBS)

For more information on these and other variables, see the GNU autoconf documentation. The
specified tools and flags will then be "frozen" inside the makefiles of build tree produced by
this configure run.

Some of the above system and third-party packages can be prohibited from use by using the
following configure flags:

--without-sybase (Sybase)

--without-ftds (FreeTDS)

--without-fastcgi (FastCGI)

--without-fltk (FLTK)

--without-wxwin (wxWindows)

--without-ncbi-c (NCBI C Toolkit)

--without-sssdb (NCBI SSS DB)

--without-sssutils (NCBI SSS UTILS)

--without-sss (both --without-sssdb and --without-sssutils)
--without-geo (NCBI GEO)

--without-sp (NCBI SP)

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.gnu.org/software/autoconf/manual/autoconf.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 19

--without-pubmed (NCBI PubMed)
--without-orbacus (ORBacus CORBA)

[and MANY more; ./configure —help | grep — ‘—without-* will give a current list for both this
and the following heading.]

You can control whether to build the following core packages using the following configure
flags:

--without-serial -- do not build C++ ASN.1 serialization library and datatool; see in internal/c
++/{ src | include}/serial directories

--without-ctools -- do not build projects that use NCBI C Toolkit see in internal/c++/{ src |
include}/ctools directories

--without-gui -- do not build projects that use wxWindows GUI package see in internal/c+
+/{ src | include}/gui directories

--with-objects -- generate and build libraries to serialize ASN.1 objects; see in internal/c+
+/{ src | include}/objects directories

--with-internal -- build of internal projects is by default disabled on most platforms; see in
internal/c++/{ src | include}/internal directories

--without-exe -- do not build the executables enlisted in the APP_PROJ.
--without-execopy -- do not copy (yet build) the executables enlisted in the APP_PROJ.

--with-lib-rebuilds -- when building an application, attempt to rebuild all of the libraries it uses
in case they are out of date.

--with-lib-rebuilds=ask -- as above, but prompt before any needed rebuilds. (Do not prompt
for libraries that are up to date.)

Here's a more detailed explanation of --with-lib-rebuilds: There are three modes of operation:

In the default mode (--without-lib-rebuilds), starting a build from within a subtree (such as
internal) will not attempt to build anything outside of that subtree.

In the unconditional mode (--with-lib-rebuilds), building an application will make the system
rebuild any libraries it requires that are older than their sources. This can be useful if you have
made a change that affects everything under objects but your project only needs a few of those
libraries; in that case, you can save time by starting the build in your project's directory rather
than at the top level.

The conditional mode (--with-lib-rebuilds=ask) is like the unconditional mode, except that
when the system discovers that a needed library is out of date, it asks you about it. You can
then choose between keeping your current version (because you prefer it or because nothing
relevant has changed) and building an updated version.

Quick Reconfiguration

Sometimes, you change or add configurables (*.in files, such as Makefile.in meta-makefiles)
in the source tree.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/internal
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/include/internal

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 20

For the build tree to pick up these changes, go to the appropriate build directory and run the
script reconfigure.sh. It will automatically use just the same command-line arguments that
you used for the original configuration of that build tree.

Run reconfigure.sh with argument:

update - if you did not add or remove any configurables in the source tree but only modified
some of them.

reconf - if you changed, added, and/or removed any configurables in the source tree.

recheck - if you also suspect that your working environment (compiler features, accessibility
of third-party packages, etc.) might have changed since your last (re)configuration of the build
tree and, therefore, you do not want to use the cached check results obtained during the last
(re)configuration.

without arguments - printout of script usage info.

Example:

cd /home/foobar/c++/GCC-Debug/build

./reconfigure.sh reconf

Naturally, update is the fastest of these methods, reconf'is slower, and recheck (which is an
exact equivalent of re-running the configure script with the same command-line arguments as
were provided during the original configuration) is the slowest.

Building with UNIX

Following are some examples of how to build specific projects and some additional topics:
* General Principles for Building with UNIX
+ Building Only Core Libraries and Applications

* Building GUI Libraries and Applications
» Building the Genome Workbench

+ Building the Entire Toolkit

General Principles for Building with UNIX
Use this key for the examples in the “Building with UNIX” sections:

$YOUR_WORK_DIR

your directory corresponding to the top-level c++ directory in the source tree

$YOUR_CONFIG_OPTIONS | any optional configuration options you’ve chosen

--with-flat-makefile

creates a makefile that can build all or selected projects

--without-internal

excludes NCBI-internal projects from the makefile

--without-gui

excludes FLTK-based projects from the makefile

--with-gbench

ensures that the makefile will contain everything necessary to build the Genome Workbench

GCC401-Debug

will be replaced based on the compiler and configuration options you’re using

gui/

selects the GUI libraries target in the flat makefile

gui/app/

selects the sub-tree containing the primary Genome Workbench executable and its helpers

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 21

all_r

selects a recursive build of all targets at this and lower levels in the source tree

The import_project script builds a single project in the working directory while referencing
the rest of a pre-built Toolkit for all other Toolkit components. For example, to build only the
app/id2_fetch application and have the rest of the pre-built Toolkit available, use these
commands:

mkdir $YOUR WORK DIR

cd $YOUR WORK DIR

import project app/id2 fetch
cd trunk/c++/src/app/id2 fetch

make

The update _projects script builds a single project and all the components it depends on in the
working directory, and does not reference or build any other Toolkit components. For example,
to build only the corelib project, use these commands:

mkdir $YOUR WORK DIR
cd $YOUR WORK DIR

update projects corelib .

The update projects script will automatically retrieve updated source code and then prompt
you for configuring, compiling, building tests, and running tests.

To run a test suite after building, use this additional command:
make check r

Building Only Core Libraries and Applications with UNIX

cd $YOUR _WORK DIR
./configure -without-gui -without-internal $YOUR CONFIG OPTIONS
cd GCC401-Debug/build

make all r

Building GUI Libraries and Applications with UNIX

cd $YOUR WORK DIR

./configure $YOUR CONFIG OPTIONS --with-flat-makefile
cd GCC401-Debug/build

make -f Makefile.flat gui/

Building the Genome Workbench with UNIX

cd $YOUR WORK DIR

./configure SYOUR CONFIG OPTIONS --with-flat-makefile --with-gbench
cd GCC401-Debug/build

make -f Makefile.flat gui/app/

(cd gui/app/gbench install && make)

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 22

Building the Entire Toolkit with UNIX

cd $YOUR WORK DIR
./configure $YOUR CONFIG OPTIONS
cd GCC401-Debug/build

make all r

Using the Toolkit with UNIX

This section discusses the following examples of how to use the Toolkit with UNIX:
* Modify or Debug an Existing Toolkit Application
* Modify or Debug an Existing Toolkit Library

Modify or Debug an Existing Toolkit Application with UNIX

If you want to modify or debug an application (e.g. gi2taxid) start with these commands:

cd $YOUR_WORK DIR
import project app/gil2taxid

You will be prompted to select a desired stability and configuration and then the script will
create the include and src trees necessary to work on the chosen application. It will also create
all the necessary makefiles to build the application. The makefiles will be configured to use
the latest nightly build of the chosen stability and configuration to resolve all dependencies
outside the chosen application.

You can now edit, build, and/or debug the application:

cd trunk/c++/src/app/gi2taxid
if you want to make changes, edit the desired file(s)
make all r

1f desired, debug using your favorite debugger

Modify or Debug an Existing Toolkit Library with UNIX

If you want to modify or debug a library (e.g. corelib) start with these commands:

cd $YOUR WORK DIR

import project corelib

You will be prompted to select a desired stability and configuration and then the script will
create the include and src trees necessary to work on the chosen library. It will also create all
the necessary makefiles to build the library. The makefiles will be configured to use the latest
nightly build of the chosen stability and configuration to resolve all dependencies outside the
chosen library.

You can now edit, build, and/or debug (via some application) the library:

cd trunk/c++/src/corelib

if you want to make changes, edit the desired file(s)

make all r

if you want to debug the library, build a dependent application

then debug using your favorite debugger

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 23

Special Considerations for Specific UNIX Platforms

Most of the non-GCC compilers require special tools and additional mandatory flags to compile
and link C++ code properly. That's why there are special scripts that perform the required non-
standard, compiler-specific pre-initialization for the tools and flags used before running
configure.

These wrapper scripts are located in the compilers/ directory, and now we have such wrappers
for the SUN WorkShop (5.5 through 5.9), GCC and ICC compilers:

« WorkShop.sh {32|64} [build dir] [--configure-flags]

* WorkShop55.sh {32]64} [build_dir] [--configure-flags]

« ICC.sh [build_dir] [--configure-flags]
Note that these scripts accept all regular configure flags and then pass them to the configure
script.
The following topics are discussed in this section:

« Linux /ICC

* Cygwin/GCC

Linux /1CC
To build a project on Linux / ICC, just follow the generic UNIX guidelines but instead of
running the ./configure.sh script you will need to run compilers/unix/ICC.sh.
Cygwin / GCC
To build a project on Cygwin / GCC, just follow the generic UNIX guidelines but instead of
running the ./configure.sh script you will need to run compilers/cygwin/build.sh.
MS Windows
Note: Please also see the General Information for All Platforms section, as it contains relevant
information that is not repeated here.
The following topics are discussed in this section:
« MS Visual C++
— Choosing a Build Scope
— Configuring
— Building
— Using
+ Cygwin/GCC
MS Visual C++

The following topics are discussed in this section:
* Choosing a Build Scope

+ Configuring
— Site-Specific Build Tree Configuration

— Fine-Tuning with MSVC Project Files
¢ Excluding project from the build

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 24

Adding files to project

Excluding files from project

Adjusting build tools settings

®* & o o

Specifying custom build rules

— DLL Configuration

— Fine-Tuning with Environment Variables
* Building

— Building a Custom Solution

— Building External Libraries (Optional)
— The Build Results

« Usin

— Start a new project that uses the Toolkit

— Start a new project in the Toolkit

— Modify or Debug an existing project in the Toolkit

Choosing a Build Scope with Visual C++

The Toolkit is very large and you may not want to retrieve and build the entire Toolkit if you
don’t need to. Therefore, after preparing the development environment and getting the source
files, you'll need to choose a build scope. Several mechanisms are provided to enable working
with only a portion of the Toolkit.

If you are interested in building only one project, you can limit the source code retrieved from
the repository:

+ using the shell script import project; or
+ using the shell script update projects.

You can also limit what will be built by choosing a standard solution. Five standard solutions
are provided to enable working only with selected portions of the Toolkit.

compilers\msvc1000 prj\static\build\ncbi_cpp.sin
compilers\msvc1000 prj\dIl\build\ncbi cpp.sin
compilers\msvc1000 prj\static\build\gui\ncbi_gui.sln
compilers\msvc1000 prj\dll\build\gui\ncbi_gui.sln
compilers\msvc1000 prj\dll\build\gbench\ncbi_gbench.sln

The first two solutions build console applications and required libraries only; the last three
solutions build GUI applications.

You can also choose between static and shared libraries. Building with static libraries will
result in much larger applications and require much more disk space. Using static libraries is
not an option for the Genome Workbench.

Configuring with Visual C++

Once you have chosen a build scope, you are ready to configure.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 25

If you used either the import_project script or the update projects script then you don’t need
to configure because both of those scripts use existing configurations.

If you chose a standard solution then you will need to configure. Each standard solution
contains a special project called -CONFIGURE- which is used for generating a Visual Studio
project file based on UNIX-style makefile templates src\....\Makefile.*

The Visual Studio specific configuration files are:

src\build-system\Makefile.mk.in.msvc
src\build-system\project tree builder.ini

src\....\Makefile.*.msvc

Each of the standard solutions use a predefined list of projects to build, which is taken from
scripts\projects*.Ist files.

To configure and generate the project list, open the chosen solution, select the desired
configuration, right click on the -CONFIGURE- project, and click 'Build'. This will rewrite
the project file that Visual C++ is currently using, so you should see one or more dialog boxes
similar to this:

File Modification Detected

l'x

The solution 'test4039a" has been modified outside the enviranment.

Press Reload to load the updated solution from disk,

Press Ignore to ignore the external changes. The changes will be used the next time you open the

solution.

i Ignaore |

Note: At least one such dialog will typically appear before the configuration is complete.
Therefore, you need to wait until you see the message:

B R R R R R R

============== [t 1is now safe to reload the solution: ==============

============== Please, close it and open again ==============

RR R IRk dh Ik kb b b b b b b b b b b b b b b b b b b bk kb b kb b b b b b b b b b b b b b b kb b b b b b b b b kb b b bk 3k b b bk b b b i

*

in the Output window before reloading. Once this message appears, you can either click
"Reload" or click "Ignore" and then manually close and reopen the solution. The reloaded
solution will list all configured projects.

A configuration tool with a Java-based GUI is also available and can be launched by building
the -CONFIGURE-DIALOG- project. For more information on using the configuration GUI,
see the general section on configuring.

The following topics discuss configuring with Visual C++ in more detail:

Site-Specific Build Tree Configuration
Fine-Tuning with MSVC Project Files

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 26

— Excluding a Project From the Build
— Adding Files to a Project

— Excluding Files From a Project

— Adjusting Build Tools Settings

— Specifying Custom Build Rules
DLL Configuration

+ Fine-Tuning with Environment Variables

Site-Specific Build Tree Configuration

File project tree builder.ini (see Table 4) describes build and source tree configurations,
contains information about the location of 3rd-party libraries and applications, and includes
information used to resolve macro definitions found in the UNIX -style makefile templates.

Toolkit project makefiles can list (in a pseudo-macro entry called 'REQUIRES') a set of
requirements that must be met in order for the project to be built. For example, a project can
be built only on UNIX, or only in multi-thread mode, or if a specific external library is available.
Depending on which of the requirements are met, the Toolkit configurator may exclude some
projects in some (or all) build configurations or define preprocessor and/or makefile macros.

Some of the Toolkit projects can be built differently depending on the availability of non-
Toolkit components. For them, there is a list of macros - defined in 'Defines' entry - that define
conditional compilation. To establish a link between such a macro and a specific component,
the configuration file also has sections with the names of the macro. For each build
configuration, project tree builder creates a header file (see 'DefinesPath' entry) and defines
these macros there depending on the availability of corresponding components.

Many of the requirements define dependency on components that are 3rd-party packages, such
as BerkeleyDB. For each one of these there is a special section (e.g. [BerkeleyDB]) in
project_tree_builder.ini that describes the path(s) to the include and library directories of the
package, as well as the preprocessor definitions to compile with and the libraries to link against.
The Toolkit configurator checks if the package's directories and libraries do exist, and uses this
information when generating appropriate MSVS projects.

There are a few indispensable external components that have analogs in the Toolkit. If the
external component is not found, the analog in the Toolkit is used. The 'LibChoices' entry
identifies such pairs, and 'LibChoicelncludes' provides additional include paths to the builtin
headers.

Note: There are some requirements which, when building for MS Visual Studio, are always or
never met. These requirements are listed in 'ProvidedRequests', 'StandardFeatures', or
"NotProvidedRequests' of the 'Configure' section.

Fine-Tuning with MSVC Project Files

While default MSVSS project settings are defined in the Makefile.mk.in.msvc file, each project
can require additional MSVC-specific fine-tuning, such as compiler or linker options,
additional source code, etc. These tune-ups can be specified in

Makefile.<project name>.[libjapp].msvc file located in the project source directory. All
entries in such *.msvc file are optional.

Any section name can have one or several optional suffixes, so it can take the following forms:

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/dbapi/Makefile.dbapi_advanced_features.app.msvc

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 27

+ SectionName

» SectionName.CompilerVersion

* SectionName.Platform

* SectionName.[static|dll]

* SectionName.[debug|release]

* SectionName.CompilerVersion.[debug|release]

+ SectionName.[static|dll].[debug|release]

+ SectionName.[debug|release].ConfigurationName

* SectionName.[static|dll].[debug|release].ConfigurationName

CompilerVersion

1000 (i.e. MSVC 2010)

Platform

Win32 or x64

static or dll

type of runtime libraries

debug or release

build configuration type

ConfigurationName

build configuration name (e.g. DebugDLL, or ReleaseMT)

Settings in sections with more detailed names (ones that appear later on this list) override ones
in sections with less detailed names (ones that appear earlier).

Note: After changing settings, you will need to reconfigure and reload the solution for the
change to take effect.
The following topics discuss further fine-tuning with MSVC project files:

« Excluding a Project From the Build

+ Adding Files to a Project

» Excluding Files From a Project

* Adjusting Build Tools Settings

» Specifying Custom Build Rules

To exclude a project from the build, set the 'ExcludeProject' entry in the 'Common' section:
* [Common]
* ExcludeProject=TRUE

To add files to a project, add entries to the 'AddToProject' section. The section can have the
following entries:

* [AddToProject]

* HeadersInInclude=
+ HeadersInSrc=

* IncludeDirs=

+ LIB=

* ResourceFiles=

* SourceFiles=

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 28

HeadersInInclude | override default list of headers from include directory

HeadersInSrc override default list of headers from source directory

IncludeDirs additional include directories (relative to the source directory)

LIB additional C++ Toolkit libraries (without extension)

ResourceFiles MS Windows resource files

SourceFiles additional (usually MS Windows specific) source files (without extension)

By default, all header files found in the project's include and source directories are added to
the MSVS project. If that's not exactly what you need, the list of headers can be overridden
using the 'HeadersInInclude' and 'HeadersInSrc' entries. There, file names should be entered
with their extension; an exclamation mark means negation; and wildcards are allowed. For
example, the entry:

HeadersInInclude = *.h filel.hpp !file2.h
means "add all files with h extension, add filel.hpp, and do not add file2.h".
Note: A single exclamation mark with no file name means "do not add any header files".

All directories given in the 'IncludeDirs' entry should be specified relative to the source
directory (absolute paths aren't supported). After reconfiguring, these directories are saved in
the AdditionallncludeDirectories project property - now relative to $(ProjectDir). The
following table illustrates this path conversion:

IncludeDirs Path -

specified relative to source directory | saved relative to $(ProjectDir)

AdditionallncludeDirectories Path -

somedir

LA\ sre\$(SolutionName)\somedir

.\somedir

LA\ \sre\somedir

.\.\\somedir

AL\ \somedir

AL\ \somedir

S \somedir

AL \\somedir, ete.

AL \somedir, ete.

Although 'IncludeDirs' does not support absolute paths, it is possible to add absolute paths by
changing the 'AdditionalOptions' entry in the '[Compiler]' section (see Build Tool Settings).

Here are some example entries for the 'AddToProject' section:

[AddToProject]

HeadersInInclude = *.h

HeadersInSrc = task server.hpp server core.hpp srv_sync.hpp \
srv_stat.hpp

IncludeDirs=..\\..\\sra\\sdk\\interfaces

LIB=xser msbuild dataobj

ResourceFiles=cn3d.rc

SourceFiles = sysalloc

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 29

To exclude files from a project, set the 'SourceFiles' or 'LIB' entries of the
'ExcludedFromProject' section.

The build tools are 'Compiler’, 'Linker', 'Librarian', and 'ResourceCompiler’ - that is, the tools
used by the MS Visual Studio build system. The names of available entries in any one of these
sections can be found in the Makefile.mk.in.msvc file. For the meaning and possible values of
these entries, see Microsoft's VCProjectEngine reference, or the specific reference pages for
the VCCLCompilerTool, VCLinkerTool, VCLibrarianTool, and VCResourceCompilerTool
Interfaces.

Here are some example settings, with some illustrating how section name suffixes can be used:

[Compiler]
AdditionalOptions=/I\"\\\\server\\share\\absolute path with spaces\"

[Compiler.release]
Optimization=0
EnableFunctionLevellLinking=FALSE
GlobalOptimizations=FALSE

[Compiler.900]

PreprocessorDefinitions=UCS2; CRT_SECURE_NO_DEPRECATE=1;
[Compiler.900.release]
PreprocessorDefinitions=UCS2; SECURE_SCL=0; CRT SECURE_NO DEPRECATE=1;

[Linker]

subSystem = 1

GenerateManifest=true

EmbedManifest=true

AdditionalOptions=testl.lib test2.lib \\\\server\\share\\path no_ spaces\
\test3.1lib

[Linker.debug]

OutputFile = $(OutDir)\\python ncbi dbapi d.pyd
[Linker.release]

OutputFile = $(OutDir)\\python ncbi dbapi.pyd

Relative paths specified in build tool settings are relative to $(ProjectDir).

Note: 'AdditionalOptions' entries are applied when the tool executes - they do not modify other
project properties. For example, if you add an include path using 'AdditionalOptions', it will
not affect the 'AdditionallncludeDirectories' property, which is used by the IDE. In this case,
Visual C++ will not be able to check syntax, lookup definitions, use IntelliSense, etc. for files
in that location while you're editing - but they will compile normally. Therefore, use the
'AddToProject' section (see above) for include directories unless you must use an absolute path.

See the Makefile.mk.in.msvc file for the default MSVS project settings.
To specify custom build rules for selected files in the project (usually non C++ files) use the

'CustomBuild' section. It has a single entry, 'SourceFiles', which lists one or more files to apply
the custom build rules to. Then, create a section with the name of the file, and define the

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/find?string=Makefile.mk.in.msvc
http://msdn.microsoft.com/en-us/library/ms168475.aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.vcprojectengine.vcclcompilertool.aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.vcprojectengine.vclinkertool.aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.vcprojectengine.vclibrariantool.aspx
http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.vcprojectengine.vcresourcecompilertool.aspx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in.msvc

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 30

following entries there: 'Commandline', 'Description’, 'Outputs', and 'AdditionalDependencies'
- that is, the same entries as in the Custom Build Step of Microsoft Visual Studio project
property pages. This data will then be inserted "as is" into the MSVS project file.

DLL Configuration

The Toolkit UNIX-style makefile templates give a choice of building the library as dynamic
or static (or both). However, it is often convenient to assemble a "bigger" DLL made of the
sources of several static libraries.

In the Toolkit, such compound DLLs are described using a set of special makefiles in the src/
dll subdirectory. Each such file — Makefile.*.dll — contains the following entries:

DLL

name of the compound DLL

HOSTED_LIBS

names of the included static libraries

DEPENDENCIES

dependencies on other static or dynamic libraries

CPPFLAGS

additional compiler flags, specific for this DLL

Fine-Tuning with Environment Variables

It is possible to fine-tune the configuration process by using the following environment
variables:

 PREBUILT_PTB_EXE
« PTB_PROJECT

When the PREBUILT PTB_EXE environment variable defines an existing file (e.g.

project tree builder.exe), this EXE is used. Otherwise, the configuration process builds
project_tree_builder using existing sources, and then uses this EXE. At NCBI, even when
PREBUILT PTB EXE is not defined, the toolkit still tries to use an external

project tree builder — to speed up the configuration. Normally, this is the most recent
successfully built one. To disable such behavior, this variable should be defined and have the
value bootstrap:

PREBUILT PTB EXE=bootstrap

The PTB_PROJECT environment variable can be used to redefine the default project list. For
example, it can be defined as follows:

PTB_PROJECT=scripts\projects\datatool\project.Ist

Building with Visual C++

Once you have chosen a build scope and have configured, you are ready to build. The configure
process creates a solution containing all the projects you can build.

To build a library, application, sample, or any other project, simply choose your configuration
(e.g. ReleaseDLL), right-click on the desired project, and select "Build". To build all projects
in the solution, build the -BUILD-ALL- project.

Note: Do not use the 'Build Solution' command because this would include building the —

CONFIGURE- project, which would result in: (a) reconfiguring (which may not be necessary
at the time), and more importantly (b) not building the remaining projects in the solution.

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 31

By the way, you can build a desired project by right-clicking on it and selecting build, but
debugging applies only to the StartUp Project. To select a project for debugging, right-click
the desired project and select "Set as StartUp Project”.

Following are some additional build-related topics:

* Building a Custom Solution

« Building External Libraries (Optional)
¢ The Build Results

Building a Custom Solution

This section deals with building a custom solution within the C++ Toolkit source tree. To build
a custom solution outside the source tree, please see the section on using the new_project script.

There is a template solution, compilers\msvc1000_prj\user\build\ncbi_user.sln, that should
help you build a customized solution. The project list for this solution is in scripts\projects
\ncbi_user.Ist

Note: Do not use this solution directly. Instead, make a new solution based on the template:

1 Make copies of the compilers\msvc1000 prj\user\ subtree and the scripts\projects
\ncbi_user.lIst file (keep the copies in the same folders as the originals).

2 Rename the subtree, solution file, and project list file appropriately, for example to
compilers\msvc1000 prj\project name\, compilers\msvc1000 prj\project name
\build\project name.sln, and scripts\projects\project name.lst.

3 Inthe folder compilers\msvc1000_ prj\project name\build\UtilityProjects\, use a text
editor to edit CONFIGURE _.vcproj, and CONFIGURE DIALOG _.vcproj.
Change all instances of "ncbi_user" to "project name".

4 In the same folder, also edit configure. , and configure dialog. :
a Change all instances of "ncbi_user" to "project name".

b By default, the solution uses static runtime libraries. If you want to use
DLL's, also add the '-dll' option to the 'set PTB_ FLAGS="line.

¢ By default, the solution uses a project list file. If you don't want to use a
project list file (e.g. if you want to use a project tag filter instead), also change
the 'set PTB_ PROJECT REQ='line to the appropriate subtree, e.g. 'set
PTB_PROJECT REQ=src\cgi\'.

d Ifyou want to use a project tag filter, add the -projtag' option to the 'set
PTB_FLAGS='line, e.g. 'set PTB_FLAGS=-projtag "core && !test"'. See
the section on reducing build scope for more information on using project
tags.

5 Ifyour new project will use a project list file, edit scripts\projects\project name.lst to
identify the required project folders.

6 Your custom solution can now be built. Open the solution file compilers
\msvc1000_prj\project name\build\project name.sln, configure, and build.

Note that the project directory, msvc1000 prj, may be different for your version of Visual C
++.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 32

Building External Libraries (Optional)

Some of the NCBI C++ Toolkit projects make use of the NCBI C Toolkit (not to be confused
with the NCBI C++ Toolkit) and/or freely distributed 3rd-party packages (such as BerkeleyDB,
LibZ, FLTK, etc.).

At NCBI, these libraries are already installed, and their locations are hard coded in the C++
Toolkit configuration files. If you are outside of NCBI, you may need to build and install these
libraries before building the C++ Toolkit.

Alternatively, the source code for the NCBI C Toolkit and the 3rd-party packages can be
downloaded from the NCBI FTP site and built - ideally, in all available configurations.

If you do not have the external libraries already installed, you can download, build, and install
the NCBI C Toolkit and the freely distributed 3rd-party packages. The source code for the
NCBI C Toolkit and the freely distributed 3rd-party packages can be downloaded from the
NCBI FTP site and built in all available configurations. Refer to the documentation on the
specific packages you wish to install for more information.

The Build Results

The built Toolkit applications and libraries will be put, respectively, to:
compilers\msvc1000 prj\{static|dll}\bin\<config name>
compilers\msvc1000 prj\{static|dll}\lib\<config name>

Note that the project directory, msvc1000_prj, may be different for your version of Visual C
++,

Using the Toolkit with Visual C++

This section dissusses the following examples of how to use the Toolkit with Windows:
« Start a New Project That Uses the Toolkit
+ Start a New Project in the Toolkit
* Modify or Debug an Existing Project in the Toolkit

Start a New Project That Uses the Toolkit

To use an already built C++ Toolkit (with all its build settings and configured paths), use the
new_project script to create a new project:

new_project <name> <type> [builddir] [flags]

where:

<name> is the name of the project to create

<type> is one of the predefined project types

[builddir] | is the location of the C++ Toolkit libraries

[flags] selects a recursive build of all targets at this and lower levels in the source tree

For example, if the Toolkit is built in the U:\cxx folder, then this command:

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 33
new project test app U:\cxx\compilers\msvcl000 prj

« creates a new local build tree;
+ puts the project source files into the \src\name folder;
+ puts the header files into name\include\name;

* puts the Visual Studio project file into name\compilers\msvc1000 prj\static\build
\name; and

+ puts the solution file into name\compilers\msvc1000_prj\static\build.

To add new source files or libraries to the project, edit name\src\name\Makefile.name.app
makefile template, then rebuild the -CONFIGURE- project of the solution.

Start a New Project in the Toolkit with Visual C++
Follow the regular UNIX-style guidelines for adding a new project to the Toolkit.

Then, build the -CONFIGURE- project and reload the solution.

To start a new project that will become part of the Toolkit, create the makefile template first.
For applications it must be named Makefile.< project name>.app; for libraries -
Makefile.<project name>.lib. Ifit is a new folder in the source tree, you will also need to create
Makefile.in file in the new folder, to specify to the configuration system what should be built
in the new folder. Also, the new folder must be listed in the SUB_PROJ section of the parent
folder's Makefile.in. Finally, make sure your new project folder is listed in the appropriate
project list file in scripts\projects*.1st. It can be either a subdirectory of an already listed
directory, or a new entry in the list.

Modify or Debug an Existing Project in the Toolkit with Visual C++

Within NCBI, the import_project script can be used to work on just a few projects and avoid
retrieving and building the whole source tree. For example, to work on the 'corelib' subtree,
run:

import project corelib

The script will create the build tree, copy (or extract from the repository) relevant files, and
create Visual Studio project files and a solution which references pre-built Toolkit libraries
installed elsewhere. Then, you can modify and/or debug the project as desired.

Here's an example showing all the steps needed to build and debug the COBALT test
application using import_project with Visual C++ (you should be able to apply the approach
of this example to your project by changing some names):

1 Inthe Windows command-line prompt, run:
import_project algo/cobalt
This will prepare a Visual Studio solution and open Visual Studio. There, build
"cobalt unit test.exe". It's all 32-bit by default, even though your Windows is 64-
bit.
(Agree to map "S:" disk if you want to see debug info from the pre-built libraries.)
2 Copy your "data" dir from:
imported projects\src\algo\cobalt\unit test\data
to:
imported projects\compilers\msvc1000 prj\static\build\algo\cobalt\unit_test\data

3 Debug it (right-click on it, and choose Debug).

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 34

If this doesn't work (for whatever reasons) on your own PC, you're welcome to use the
communal PC servers (via Remote Desktop):

http://intranet.ncbi.nlm.nih.gov/wiki-private/CxxToolkit/index.cgi/
Software Development#Software Development9

Cygwin / GCC

To build the project with Cygwin / GCC, just follow the generic UNIX guidelines, noting any
special considerations.

Mac OS X

Note: Please also see the General Information for All Platforms section, as it contains relevant
information that is not repeated here.

This section covers the following topics:
+ Xcode3.0,3.1
— Choosing a Build Scope
— Configuring
— Building
+ Xcode 1.0,2.0
— Build the Toolkit
— The Build Results
+ Darwin / GCC

* CodeWarrior

Xcode 3.0, 3.1

Starting with Xcode build system version 3.0, the NCBI C++ Toolkit uses a new approach to
configuring and building the toolkit with Mac OS X. The goal is to make the build process
match the build process of Microsoft Visual C++ as closely as possible.

The following topics are discussed in this section:
+ Choosing a Build Scope

+ Configuring
— Site-Specific Build Tree Configuration

— Dynamic Libraries Configuration
— Fine-Tuning Xcode Target Build Settings

— Adding Files to Target

— Specifying a Custom Build Script
* Building
— Building 3%-Party Libraries (Optional)

— Building from a Command-Line
— The Build Results

Configure, Build, and Use the Toolkit

http://intranet.ncbi.nlm.nih.gov/wiki-private/CxxToolkit/index.cgi/Software_Development#Software_Development9
http://intranet.ncbi.nlm.nih.gov/wiki-private/CxxToolkit/index.cgi/Software_Development#Software_Development9

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 35

Choosing a Build Scope with Xcode 3.0 or Later

The Toolkit is very large and you may not want to retrieve and build the entire Toolkit if you
don’t need to. Therefore, after preparing the development environment and getting the source
files, you'll need to choose a build scope. Several mechanisms are provided to enable working
with only a portion of the Toolkit.

The first thing you can do is to limit the source code retrieved from the repository:
 using the shell script import_project; or
+ using the shell script update projects.

Next, you can limit what will be built by choosing one of the five standard projects:
compilers/xcode30_prj/static/ncbi_cpp.xcodeproj

compilers/xcode30 prj/dll/ncbi_cpp_dll.xcodeproj

compilers/xcode30 prj/static/ncbi_gui.xcodeproj

compilers/xcode30 prj/dll/ncbi_gui_dll.xcodeproj

compilers/xcode30 prj/dll/ncbi_gbench_dll.xcodeproj

The first two projects build console applications and required libraries only; the last three
projects build GUI applications:

Note that the project directory, xcode30_prj, may be different for your version of Xcode.

Configuring with Xcode 3.0 or Later

Once you have chosen a build scope, you are ready to configure.

Each standard project contains a single special target called CONFIGURE. Building
CONFIGURE first builds an application called project tree builder (PTB) and then runs that
application. PTB overwrites the current standard project file with a new project that contains
all the other Xcode build targets. The new build targets are based on UNIX-style makefile
templates (src/.../Makefile.*) and are specified by predefined lists of projects in scripts/
projects/*.Ist files.

When CONFIGURE is built, a dialog will pop up stating that the project file has been
overwritten by an external process (the external process is the PTB). Reload the project to
ensure that it is loaded correctly. Then any or all of the other targets can be built.

A configuration tool with a Java-based GUI is also available and can be launched by building
the CONFIGURE-DIALOG target. For more information on using the configuration GUI,
see the general section on configuring.

You may build any of the five standard projects. The projects in the static directory build
libraries and applications using static Toolkit libraries, the other three use dynamic libraries.

To build a specific target, make it an active one and invoke the Build command in the Xcode
workspace. To build all project targets, build the BUILD_ALL target.

Additional configuration files include:

+ src/build-system/project _tree_builder.ini

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_faq
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 36

+ src/build-system/Makefile.mk.in.xcode
« src/.../Makefile.*.xcode

Modifying project tree builder.ini is described below in the section Site-Specific Build Tree
Configuration.

Modifying Makefile.mk.in.xcode and Makefile.*.xcode is described below in the section Fine-
Tuning Xcode Target Build Settings.

The following topics discuss additional information about configuring with Xcode:
+ Site-Specific Build Tree Configuration

* Dynamic Libraries Configuration
* Fine-Tuning Xcode Target Build Settings

« Adding Files to Target

« Specifying a Custom Build Script

Site-Specific Build Tree Configuration

The build tree configuration can be tailored to your site by modifying the file src/build-system/
project_tree_builder.ini (see Table 4). For example, you may need to change the location of
3td_party libraries to match your systems. Or you may need to specify conditions under which
a certain project is excluded from the build.

project_tree_builder.ini describes build and source tree configurations; contains information
about the location of 3rd-party libraries and applications; and includes information used to
resolve macro definitions found in the UNIX-style makefile templates.

Toolkit project makefiles can list a set of requirements that must be met in order for the project
to be built. These requirements are specified in the pseudo-macro REQUIRES. For example,
aproject can be built only on UNIX, or only in multi-thread mode, or only if a specific external
library is available. Depending on which of the requirements are met, the Toolkit configuration
tool may exclude some projects in some (or all) build configurations, preprocessor defines,
and/or makefile macros.

Some of the Toolkit projects can be built differently depending on the availability of non-
Toolkit components. For those projects, there is a list of macros - defined in the 'Defines' entry
- that define conditional compilation. Each of these macros also has its own section in
project_tree_builder.ini that links the macro to a specific component. Using the 'Defines' entry
and the associated macro sections, a project can be linked to a list of components. For each
build configuration, project tree builder creates a header file (see 'DefinesPath’ entry) and
defines these macros there depending on the availability of the corresponding components.

Many of the requirements define dependencies on 3rd-party packages, such as BerkeleyDB.
For each one of these there is a special section (e.g. [BerkeleyDB]) in

project tree builder.ini that describes the path(s) to the include and library directories of the
package, as well as the preprocessor definitions to compile with and the libraries to link against.
The Toolkit configurator checks if the package's directories and libraries do exist, and uses this
information when generating appropriate projects.

There are a few indispensable external components that have analogs in the Toolkit. If external
libraries for these components are not available then the internal analog can be used. The
'LibChoices' entry identifies such pairs, and 'LibChoicelncludes' provides additional include
paths to the built-in headers.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 37

Note: There may be some requirements which are always or never met. These requirements
are listed in the 'ProvidedRequests', 'StandardFeatures', or 'NotProvidedRequests' entries of the
'Configure' section.

Dynamic Libraries Configuration

The Toolkit UNIX-style makefile templates give a choice of building the library as dynamic
or static (or both). However, it is often convenient to assemble "bigger" dynamic libraries made
of the sources of several static libraries.

In the Toolkit, such compound libraries are described using a set of special makefiles in src/
dll subdirectory. Each such file — Makefile.*.dll — contains the following entries:

* DLL - the name of the compound dynamic library;

+ HOSTED_LIBS - the names of the static libraries to be assembled into the compound
dynamic library;

+ DEPENDENCIES — dependencies on other static or dynamic libraries; and
« CPPFLAGS — additional compiler flags, specific for this dynamic library.

Fine-Tuning Xcode Target Build Settings

While default build settings are defined in the Makefile.mk.in.xcode file, it is possible to
redefine some of them in special tune-up files — Makefile.<project name>.{libjapp}.xcode —
located in the project source directory. All entries in the tune-up files are optional.

Section names in the tune-up files can have one or more optional suffixes and can take any of
the following forms:

+ SectionName

* SectionName.CompilerVersion

+ SectionName.Platform

+ SectionName.[static|dll]

* SectionName.[debug|release]

+ SectionName.CompilerVersion.[debug|release]

+ SectionName.[static|dll].[debug|release]

* SectionName.[debug|release].ConfigurationName

» SectionName.[static|dll].[debug|release].ConfigurationName

Here, 'static' or 'dll' means the type of runtime libraries that a particular build uses; 'debug' or
'release' means the type of the build configuration; and 'ConfigurationName' means the name
of the build configuration, for example DebugDLL or ReleaseMT.

Settings in sections with more detailed names (ones that appear later on this list) override ones
in sections with less detailed names (ones that appear earlier).

Adding Files to Target

This information should be entered in the '"AddToProject' section. The section can have the
following entries:

* [AddToProject]
* SourceFiles=

* IncludeDirs=

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 38

« LIB=
* HeadersInInclude=
+ HeadersInSrc=

The 'SourceFiles' entry lists additional (usually OSX specific) source files for the project.
Source file entries should not include file name extensions. The 'IncludeDirs' entry lists
additional include directories, and the 'LIB' entry lists additional libraries for the project.

By default, all header files found in the project's include and source directories are added to
the Xcode target. If that's not exactly what you need though, then the default set of headers to
be added to the target can be altered using the 'HeadersInInclude' and 'HeadersInSrc' entries.
Unlike the 'SourceFiles' entry, file names in these entries should include their extension. Use
an exclamation mark to exclude files that would otherwise be included. Wildcards are allowed.
For example, the following entry

HeadersInInclude = *.h filel.hpp !file2.h
means "add all files with the .h extension, add filel.hpp, and do not add file2.h".

Note: A single exclamation mark with no file name means "do not add any header files".

Specifying a Custom Build Script

For a particular target, it is possible to specify a custom build script which will run in addition
to the standard build operation. This could be used, for example, to copy application resource
files once the build is completed. Xcode will automatically incorporate the custom script into
the standard build process.

In the appropriate Makefile.*.xcode customization file, define a section called ‘CustomScript’.
It has one mandatory entry — Script, and three optional ones:

* Input — a list of input files;
* Output — a list of output files; and
+ Shell — which shell to use (the default is ‘/bin/sh”).

Building with Xcode 3.0 or Later

Once you have chosen a build scope and have configured, you are ready to build.

Note: Some projects may require using 3rd-party libraries.

Select the desired project and build it. To build all projects, select the BUILD-ALL project.

Following are some examples of how to build specific projects and some additional topics:
« Building 3"-Party Libraries (Optional)

* Building from a Command-Line
¢ The Build Results

Build 3-Party Libraries (optional)

Some of the NCBI C++ Toolkit projects make use of the NCBI C Toolkit (not to be confused
with the NCBI C++ Toolkit) and/or freely distributed 3rd-party packages (such as BerkeleyDB,
LibZ, FLTK, etc.).

Configure, Build, and Use the Toolkit

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 39

At NCBI, these libraries are already installed, and their locations are hard coded in the C++
Toolkit configuration files. If you are outside of NCBI, you may need to build and install these
libraries before building the C++ Toolkit.

If you do not have the external libraries already installed, you can download, build, and install
the NCBI C Toolkit and the freely distributed 3rd-party packages. The source code for the
NCBI C Toolkit and the freely distributed 3rd-party packages can be downloaded from the
NCBI FTP site and built in all available configurations. Refer to the documentation on the
specific packages you wish to install for more information.

Building from a Command-Line with Xcode 3.0 or Later

From the command-line, you can either build exactly as under UNIX, or you can build for
Xcode.

To configure for Xcode, first run configure in the Xcode project directory (run configure --
help to see available options):

cd compilers/xcode30 prj

./configure

Once you have configured for Xcode, you can either open and work in the Xcode IDE or build
from the command-line.

To build from the command-line, run make all_r. Optionally build the testsuite with make
check r.

make all r

make check r

The Build Results

Applications and libraries produced by the build will be put, respectively, into:
» compilers/xcode30 prj/{static|dll}/bin/<ConfigurationName>
« compilers/xcode30_prj/{static|dll}/lib/<ConfigurationName>

Xcode 1.0, 2.0

For versions of Xcode earlier than 3.0 the handmade scripts have to be used.

The following topics are discussed in this section:
+ Build the Toolkit
+ The Build Results

Build the Toolkit

Open, build and run a project file in compilers/xCode.

This GUI tool generates a new NCBI C++ Toolkit Xcode project. It allows you to:
* Choose which Toolkit libraries and applications to build.
* Automatically download and install all 3rd-party libraries.

» Specify third-party installation directories.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 40

The Build Results

The above process results in the Toolkit applications and libraries being put into the output
directory selected by the user.

Apple Xcode versions 2.0 and above support build configurations. We use the default names
Debug and Release, so the built applications will go to, for example:

« <output_dir>/bin/Debug/Genome Workbench.app, or
« <output_dir>/bin/Release/Genome Workbench.app

Apple Xcode versions before 2.0 do not support build configurations, so the build results will
always go to:

+ <output_dir>/bin/Genome Workbench.app
Most libraries are built as Mach-O dynamically linked and shared (.dylib) and go to:
« <output_dir>/lib

Genome Workbench plugins are built as Mach-O bundles (also with .dylib extension) and get
placed inside Genome Workbench application bundle:

« <output_dir>/Genome Workbench.app/Contents/MacOS/plugins

Darwin / GCC
To build the project with Darwin / GCC, just follow the generic UNIX guidelines.

CodeWarrior

For various reasons we have decided to drop support for CodeWarrior. The latest version of
the Toolkit that supported CodeWarrior can be found here.

Configure, Build, and Use the Toolkit

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes_12_31_2005

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 1. Environment variables that affect the build process

Page 41

Name Default Synopsis

CcC gce, cc C compiler

CXX c++, gt++, gee, CC, cxx, cct+ C++ compiler, also being used as a linker
CPP $CC-E C preprocessor

CXXCPP $CXX -E C++ preprocessor

AR ar cru Librarian

STRIP strip To discard symbolic info

CFLAGS -g or/and/nor -O C compiler flags

CXXFLAGS -g or/and/nor -O C++ compiler flags

CPPFLAGS -D_DEBUG or/and/nor-DNDEBUG | C/C++ preprocessor flags

LDFLAGS None Linker flags

LIBS None Libraries to link to every executable
CONFIG_SHELL | /bin/sh Command interpreter to use in the configuration scripts and makefiles (it must be

compatible with sh)

Configure, Build, and Use the Toolkit

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 2. User-defined localization variables

Name

Default

Synopsis

THREAD_LIBS

-Ipthread

System thread library

NETWORK_LIBS

-Isocket -Insl

System network libraries

MATH_LIBS -lm System math library
KSTAT_LIBS -lkstat System kernel statistics library
RPCSVC_LIBS -Irpesve System RPC services library
CRYPT_LIBS -lerypt|_i] System encrypting library

SYBASE_PATH

/netopt/Sybase/clients/current

Path to Sybase package (but see note below)

FTDS PATH

/netopt/Sybase/clients-mssql/current

Path to FreeTDS package

FASTCGI_PATH

$NCBI/fegi-current

Path to the in-house FastCGI client lib

FLTK_PATH SNCBI/Altk Path to the FLTK package
WXWIN PATH SNCBI/wxwin Path to the wxWindows package
NCBI_C_PATH SNCBI Path to the NCBI C Toolkit
NCBI_SSS_PATH | $NCBI/sss/BUILD Path to the NCBI SSS package
NCBI_GEO_PATH | $NCBI/geo Path to the NCBI GEO package
SP_PATH $SNCBI/SP Path to the SP package
NCBI_PM_PATH SNCBI/pubmed[64] Path to the NCBI PubMed package

ORBACUS_PATH

$NCBI/corba/OB-4.0.1

Path to the ORBacus CORBA package

Page 42

Note: It is also possible to make configure look elsewhere for Sybase by means of --with-sybase-local[=DIR]. If you specify a directory, it will
override SYBASE_PATH; otherwise, the default will change to /export/home/sybase/clients/current, but SYBASE_PATH will still take priority.

Also, the option --with-sybase-new will change the default version of Sybase from 12.0 to 12.5 and adapt to its layout.

It is also possible to overridle WXWIN_ PATH by --with-wxwin=DIR, FLTK PATH by --> --with-fltk=DIR, and ORBACUS PATH by --with-

orbacus=DIR.

Configure, Build, and Use the Toolkit

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 3. Derived localization variables for makefiles

Page 43

Name

Value

Used to...

THREAD_LIBS

$THREAD_LIBS

Link with system thread lib.

NETWORK_LIBS

$NETWORK_LIBS

Link with system network libs.

MATH_LIBS $MATH_LIBS Link with system math lib.
KSTAT_LIBS $KSTAT_LIBS Link with system kernel stat lib.
RPCSVC_LIBS $RPCSVC_LIBS Link with system RPC lib.
CRYPT_LIBS $CRYPT_LIBS Link with system encrypting lib.

SYBASE_INCLUDE

-I$SYBASE_PATH/include

#include Sybase headers

SYBASE LIBS

-L$SYBASE_PATH/Ilib[64] -Iblk[r][64] -lct[_r][64] -les[_r][64] -ltel[r]
[64] -lcomn[_r][64] -lintl[r][64]

Link with Sybase libs.

SYBASE DLLS

-] r][64]

Sybase DLL-only libs

SYBASE_DBLIBS

-L$SYBASE_PATH/Iib[64] -Isybdb[64]

Link with Sybase DB Lib APL

FTDS_INCLUDE

-ISFTDS_PATH/include

#include FreeTDS headers

FTDS_LIBS

-LSFTDS_PATH/lib -Isybdb -ltds

Link with the FreeTDS API.

FASTCGI_INCLUDE

-ISFASTCGI_PATH/include[64]

#include Fast-CGI headers

FASTCGI_LIBS

-LSFASTCGI_PATH/lib[64] -1fcgi or -LSFASTCGI_PATH/altlib[64] -lfcgi

Link with FastCGI lib.

FLTK_INCLUDE

-ISFLTK_PATH/include

#include FLTK headers

FLTK_LIBS

-L$FLTK_PATH/[GCC-]{Release|Debug}[MT][64]/1ib -Ifltk ... -1Xext -
IX11 ... or -LSFLTK _PATH/Iib

Link with FLTK libs.

WXWIN_INCLUDE

-ISWXWIN_PATH/include

#include wxWindows headers

WXWIN_LIBS

"LSWXWIN_PATH/[GCC-]{Release|Debug}/lib -lwx_gtk[d] -lgtk -lgdk -
Igmodule -Iglib or -LSWXWIN_PATH/Iib

Link with wxWindows libs.

NCBI_C_INCLUDE

-ISNCBI_C_PATH/include[64]

#include NCBI C Toolkit headers

NCBI_C_LIBPATH

-L$NCBI_C_PATH/lib[64] or -LSNCBI_C_PATH/altlib[64]

Path to NCBI C Toolkit libs.

NCBI_C ncbi

-Incbi

NCBI C Toolkit CoreLib

NCBI_SSS_INCLUDE

-ISNCBI_SSS_PATH/include

#include NCBI SSS headers

NCBI_SSS_LIBPATH

-L$NCBI_SSS PATH/lib/....{Release|Debug} [GNU][64][mt]

Link with NCBI SSS libs.

NCBI_GEO_INCLUDE

-I$NCBI_GEO_PATH/include

#include NCBI GEO headers

NCBI_GEO_LIBPATH

-LSNCBI_GEO_PATH/lib/.... .. [GCC-[KCC-ICC-]{Release|Debug} [64]

Link with NCBI GEO libs.

SP_INCLUDE

-I$SP_PATH/include

#include SP headers

SP_LIBS

-L$SP_PATH/{Release|Debug}[MT][64] -Isp

Link with the SP lib.

NCBI_PM_PATH

$NCBI_PM_PATH

Path to the PubMed package.

ORBACUS_INCLUDE

-ISORBACUS_PATH/include -ISORBACUS_PATH/{Release|Debug}[MT]
[64]/inc

#include ORBacus CORBA headers

ORBACUS_LIBPATH

-LSORBACUS_PATH/{Release/Debug} [MT][64]/1ib

Link with ORBacus CORBA libs.

Configure, Build, and Use the Toolkit

300g ¥Y[001 ++D 190N 8UL 300g I4[001 ++D 190N 8UL

300g Y001 ++D 190N 8yl

Table 4. Project Tree Builder INI file (Local Site)

Page 44

Section Key Comments
[Configure] ThirdPartyBasePath, Location of 3 party libraries and applications
ThirdParty *
ThirdParty AppsBasePath
ThirdParty C ncbi
ProvidedRequests List of requirements from UNIX makefiles that are always met
StandardFeatures
NotProvidedRequests List of requirements from UNIX makefiles that are never met. Projects with
that require any one of these, will be excluded
DefinesPath Path to .h file that will contain HAVE_XXXX definitions. The path is
relative from the project tree root.
Defines List of HAVE XXXX preprocessor definitions.
Macros List of optional macros. Definition of any such macro depends upon
availability of Components
LibChoices List of pairs <libID>/<Component>. If the third-party library <Component>
is present, then this library will be used instead of the internal library
<libID>.
ThirdPartyLibsBinPathSuffix | Part of the naming convention for third-party DLLs installation makefile.
ThirdPartyLibsBinSubDir Part of the third-party DLLs installation target location.
ThirdPartyLibsTolnstall List of components, which DLLs will be automatically installed in the binary
build directory.
[ProjectTree] MetaData Makefile.mk.in - in this file the project tree builder will be looking for the
UNIX project tree macro definitions.
include include "include" branch of project tree
src src "src" branch
dil Subdirectory with DLL Makefiles
compilers compilers "compilers" branch
projects scripts/projects "projects" branch
[msvc*] Configurations List of buid configurations that use static runtime libraries
List of build configurations that use dynamic runtime libraries
msvc_prj Sub-branch of compilers branch for MSVC projects
MakefilesExt Extension of MSVC-specific makefiles
Projects "build" sub-branch
MetaMakefile Master .msvc makefile - Makefile.mk.in.msvc
[LibChoicesIncludes] CMPRS_INCLUDE et al. Definition for the include directories for LibChoices.
[Defines] Contains definition of macros from UNIX makefiles that cannot be resolved

otherwise

[HAVE_XXXX]

Component

List of the components to check. An empty list means that the component
is always available. A non-empty list means that the component(s) must be
checked on presentation during configure.

Configure, Build, and Use the Toolkit

300g ¥Y[001 ++D 190N 8UL 300g I4[001 ++D 190N 8UL

300g Y001 ++D 190N 8yl

Page 45

[Debug],[DebugDLL],etc... debug TRUE means that the debug configuration will be created.
runtimeLibraryOption C++ Runtime library to use.
[NCBI_C_LIBS], Component List of libraries to use.
[FLTK LIBS_GL]
[<LIBRARY>] INCLUDE Include path to the library headers.
DEFINES Preprocessor definition for library usage.
LIBPATH Path to library.
LIB Library files.
CONFS List of supported configurations.
[DefaultLibs] INCLUDE Default libraries will be added to each project. This section is to negotiate
the differences in the default libraries on the UNIX and Win32 platforms.
Same as for [<LIBRARY>].
LIBPATH Same as for [<LIBRARY>].
LIB Same as for [<LIBRARY>].
[Datatool] datatool ID of'the datatool project. Some projects (with ASN or DTD sources) depend
on the datatool.
Location.App Location of datatool executable for APP projects.

Location.Lib

Location of datatool executable for LIB projects.

CommandLine

Partial command line for datatool.

Configure, Build, and Use the Toolkit

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

5: Working with Makefiles

Overview
The overview for this chapter consists of the following topics:
+ Introduction
* Chapter Outline

Introduction

Building executables and libraries for a large, integrated set of software tools such as the C++
Toolkit, and doing so consistently on different platforms and architectures, is a daunting task.
Therefore, the Toolkit developers have expended considerable effort to design a build system
based upon the make utility as controlled by makefiles. Although it is, of course, possible to write
one's own Toolkit makefile from scratch, it is seldom desirable. To take advantage of the
experience, wisdom, and alchemy invested in Toolkit and to help avoid often inscrutable
compilation issues:

We strongly advise users to work with the Toolkit's make system.

With minimal manual editing (and after invoking the configure script in your build tree), the build
system adapts to your environment, compiler options, defines all relevant makefile macros and
targets, allows for recursive builds of the entire Toolkit and targeted builds of single modules,
and handles many other details that can confound manual builds.

Chapter Outline
The following is an outline of the topics presented in this chapter:
* Major Makefiles
» Makefile Hierarchy
* Meta-Makefiles
— Makefile.in Meta Files
— Expendable Projects
* Project Makefiles
— List of Optional Packages, Features, and Projects
+ Standard Build Targets
— Meta-Makefile Targets

— Makefile Targets
» Makefile Macros and Makefile.mk

« Example Makefiles

Major Makefiles

Before describing the make system in detail, we list the major types of makefiles used by the
Toolkit:

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

« meta-makefiles. These files exist for each project and tie the project together in the
Toolkit hierarchy; defining those applications and libraries as a project is necessary
for (possibly recursively) building.

Generic makefile Templates (Makefile*.in). The configure script processes these files from
the src hierarchy to substitute for the special tags "@some name@" and make other
specializations required for a given project. Note that meta-makefiles are typically derived
from such templates.

+ Customized makefiles. (Makefile.*.[liblapp]) For each library or application, this file
gives specific targets, compiler flags, and other project-specific build instructions.
These files appear in the src hierarchy.

* Configured makefiles. (Makefile) A makefile generated by configure for each project
and sub-project and placed in the appropriate location in the build tree ready for use
will be called a “configured makefile”. Note that meta-makefiles in the build tree may
be considered “configured”.

Makefile Hierarchy

All Toolkit makefiles reside in either the src directory as templates or customized files, or in
the appropriate configured form in each of your <builddir> hierarchies as illustrated in Figure
1

Most of the files listed in Figure 1 are templates from the src directory, with each corresponding
configured makefile at the top of the build tree. Of these, <builddir>/Makefile can be
considered the master makefile in that it can recursively build the entire Toolkit. The role of
each top-level makefile template is summarized as follows:

« Makefile.in - makefile to perform a recursive build in all project subdirectories.

* Makefile.meta.in - included by all makefiles that provide both local and recursive
builds.

* Makefile.mk.in - included by all makefiles; sets a lot of configuration variables.

* Makefile.lib.in - included by all makefiles that perform a "standard" library build, when
building only static libraries.

+ Makefile.dll.in - included by all makefiles that perform a "standard" library build, when
building only shared libraries.

+ Makefile.both.in - included by all makefiles that perform a "standard" library build,
when building both static and shared libraries.

* Makefile.lib.tmpl.in - serves as a template for the project customized makefiles
(Makefile.*.lib[.in]) that perform a "standard" library build.

+ Makefile.app.in - included by all makefiles that perform a "standard" application build.

* Makefile.app.tmpl.in - serves as a template for the project customized makefiles
(Makefile.*.app[.in]) that perform a "standard" application build.

» Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object
files; included by most other makefiles.

The project-specific portion of the makefile hierarchy is represented in the figure by the meta-
makefile template c++/src/myProj/Makefile.in, the customized makefile c++/src/myProj/
Makefile.myProj.[app]|lib] (not shown), and the configured makefile c++/myBuild/build/
myProj/Makefile. In fact, every project and sub-project in the Toolkit has analogous files
specialized to its project; in most circumstances, every new or user project should emulate this
file structure to be compatible with the make system.

Working with Makefiles

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

Meta-Makefiles

A typical meta-makefile template (e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks
like this:

Supply Makefile.bar ul, Makefile.bar u2 ...
#
USR_PROJ = bar ul bar u2 ...

Supply Makefile.bar 11.1ib, Makefile.bar 12.1ib ...
#
LIB PROJ = bar 11 bar 12 ...

Supply Makefile.bar al.app, Makefile.bar a2.app ...
#
APP_PROJ = bar al bar a2 ...

Subprojects
#
SUB_PROJ = app sub projl sub proj2

srcdir = @srcdir@
include Qbuilddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along
with a set of three sub-projects that can be made. The mandatory final two lines "sredir =
@sredir@; include @builddir@/Makefile.meta" define the standard build targets.

Makefile.in Meta Files

The Makefile.in meta-make file in the project's source directory defines a kind of road map
that will be used by the configure script to generate a makefile (Makefile) in the corresponding
directory of the build tree. Makefile.in does not participate in the actual execution of make,
but rather, defines what will happen at that time by directing the configure script in the creation
of the Makefile that will be executed (see also the description of standard build targets below).

The meta-makefile myProj/Makefile.in should define at least one of the following macros:

+ USR _PROIJ (optional) - a list of names for user-defined makefiles. This macro is
provided for the usage of ordinary stand-alone makefiles which do not utilize the make
commands contained in additional makefiles in the top-level build directory. Each p i
listed in USR_PROJ=p 1 ... p N must have a corresponding Makefile.p i in the
project's source directory. When make is executed, the make directives contained in
these files will be executed directly to build the targets as specified.

« LIB_PROIJ (optional) - a list of names for library makefiles. For each library 1 i listed
in LIB PROJ=1 1 ...1 N, you must have created a corresponding project makefile
named Makefile.l i.lib in the project's source directory. When make is executed, these
library project makefiles will be used along with Makefile.lib and Makefile.lib.tmpl
(located in the top-level of the build tree) to build the specified libraries.

* ASN PROIJ (optional) is like LIB_PROJ, with one additional feature: Any projects
listed there will be interpreted as the names of ASN.1 module specifications to be
processed by datatool.

Working with Makefiles

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

* APP PROJ (optional) - a list of names for application makefiles. Similarly, each
application (p1, p2, ..., pN) listed under APP_PROJ must have a corresponding project
makefile named Makefile.p*.app in the project's source directory. When make is
executed, these application project makefiles will be used along with Makefile.app and
Makefile.app.tmpl to build the specified executables.

« SUB_PROJ (optional) - a list of names for subproject directories (used on recursive
makes). The SUB_PROJ macro is used to recursively define make targets; items listed
here define the subdirectories rooted in the project's source directory where make
should also be executed.

Some additional meta-makefile macros (listed in Table 1) exist to specify various directory
paths that make needs to know. The "@"-delimited tokens are substituted during configuration
based on your environment and any command-line options passed to configure.

Expendable Projects

By default, failure of any project will cause make to exit immediately. Although this behavior
can save a lot of time, it is not always desirable. One way to avoid it is to run make -k rather

than make, but then major problems affecting a large portion of the build will still waste a lot
of time.

Consequently, the toolkit's build system supports an alternative approach: meta-makefiles can
define expendable projects which should be built if possible but are allowed to fail without
interrupting the build. The way to do this is to list such projects in EXPENDABLE * PROJ
rather than * PROJ.

Project Makefiles

When beginning a new project, the new_project shell script will generate an initial makefile,
Makefile.<project name>_app, that you can modify as needed. In addition, a working sample
application can also be checked out to experiment with or as an alternate template.

The import_project script is useful for working on existing Toolkit projects without needing
to build the whole Toolkit. In this case things are particularly straightforward as the project
will be retrieved complete with its makefile already configured as Makefile.<project name>
[app|lib]. (Note that there is an underscore in the name, not a period as in the similarly-named
customizable makefile from which the configured file is derived.)

If you are working outside of the source tree: In this scenario you are only linking to the
Toolkit libraries and will not need to run the configure script, so a Makefile.in template meta-
makefile is not required. Some of the typical edits required for the customized makefile are
shown in the section on working in a separate directory.

If you are working within the source tree or subtree: Project subdirectories that do not
contain any *.in files are ignored by the configure script. Therefore, you will now also need to
create a meta-makefile for the newly created project before configuring your build directory
to include the new project.

Several examples are detailed on the "Starting New Projects" section.

List of optional packages, features and projects

Table 2 displays the keywords you can list in REQUIRES in a customized application or
library makefile, along with the corresponding configure options:

Working with Makefiles

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

Standard Build Targets

The following topics are discussed in this section:
* Meta-Makefile Targets

« Makefile Targets

Meta-Makefile Targets

The mandatory lines from the meta-makefile example above,

srcdir = @srcdir@
include @builddir@/Makefile.meta

provide the build rules for the following standard meta-makefile targets:
« all:

— run "make -f {Makefile.*} all" for the makefiles with the suffixes listed in
macro USR_PROJ:
make -f Makefile.bar_ul all make -f Makefile.bar u2 all

— build libraries using attributes defined in the customized
makefilesMakefile.*.1ib with the suffixes listed in macro LIB_PROJ

— build application(s) using attributes defined in the customized
makefilesMakefile.*.app with the suffixes listed in macro APP_PROJ

+ all r-- first make target all, then run "make all r" in all subdirectories enlisted in $
(SUB_PROJ):
cd bar_test && make -f Makefile all r cd bar_sub_projl && make -f Makefile
all r.....

+ clean, clean_r -- run just the same makefiles but with targets clean and clean_r (rather
than all and all r), respectively

« purge, purge r --with targets purge and purge r, respectively

Makefile Targets
The standard build targets for Toolkit makefiles are all, clean and purge. Recall that recursive
versions of these targets exist for meta-makefiles.

+ all -- compile the object modules specified in the "$(OBJ)" macro, and use them to
build the library "$(LIB)" or the application "$(APP)"; then copy the resultant [liblapp]
to the [libdir|bindir] directory, respectively

+ clean -- remove all object modules and libs/apps that have been built by all

* purge -- do clean, and then remove the copy of the [libs|apps] from the [libdir|bindir]
directory.

The customized makefiles do not distinguish between recursive (all_r, clean r, purge r) and
non-recursive (all, clean, purge) targets -- because the recursion and multiple build is entirely
up to the meta-makefiles.

Makefile Macros and Makefile.mk

There is a wide assortment of configured tools, flags, third party packages and paths (see
above). They can be specified for the whole build tree with the appropriate entry in
Makefile.mk, which is silently included at the very beginning of the customized makefiles used
to build libraries and applications.

Working with Makefiles

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

Many makefile macros are supplied with defaults ORIG_* in Makefile.mk. See the list of
ORIG_* macros, and all others currently defined, in the Makefile.mk.in template for details.
One should not override these defaults in normal use, but add your own flags to them as needed
in the corresponding working macro; e.g., set CXX = $(ORIG_CXX) -DFOO_BAR.

Makefile.mk defines the following makefile macros obtained during the configuration process
for flags (see Table 3), system and third-party packages (see Table 4) and development tools
(see Table 5).

(*) The values of user-specified environment variables SFAST CFLAGS,

SFAST CXXFLAGS will substitute the regular optimization flag -O (or -O2, etc.). For
example, if in the environment: SFAST CXXFLAGS=-fast -speedy and $CXXFLAGS=-warn
-03 -std, then in makefile: $(FAST CXXFLAGS)=-warn -fast -speedy -std.

Example Makefiles

Below are links to examples of typical makefiles, complete with descriptions of their content.
+ Inside the Tree
— An example meta-makefile and its associated project makefiles
— Library project makefile: Makefile.myProj.lib
— Application project makefile: Makefile.myProj.app
— Custom project makefile: Makefile.myProj
+ New Projects and Outside the Tree
— Use Shell Scripts to Create Makefiles
— Customized makefile to build a library
— Customized makefile to build an application

— User-defined makefile to build... whatever

c++
_F_Fﬂ.a-ﬁ" \
rmvBuild
L =T
build
myFroj Makefils: cesssscoessiss Makefile.in ryFroj
Makefile.app e Makefile.app.in
Makefile apptmpl ————— e - Makefil trrpli
Malkefile akefile.app.tmplin
Makefilelilh @ - makefile lib.in Makefile.in
Makefile libtrpl - _ Makefile.lib.tmpl.in
Makefile.meta - Makefile.meta.in
Makefile.mk e Makefile.mk.in
Figure 1

Figure 1. Makefile hierarchy.

Working with Makefiles

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 7

Table 1. Path Specification Makefile Macros

Macro Source Synopsis

top_srcdir | @top_srcdir@ | Path to the whole NCBI C++ package

sredir (@sredir@ Directory in the source tree that corresponds to the directory (./) in the build tree where the build is currently going
on

includedir | @includedir@ | Top include directory in the source tree

build_root | @build root@ | Path to the whole build tree

builddir (@builddir@ Top build directory inside the build tree

incdir @incdir@ Top include directory inside the build tree

libdir @libdir@ Libraries built inside the build tree

bindir @bindir@ Executables built inside the build tree

status dir | @status dir@ | Configuration status files

Working with Makefiles

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 2. Optional Packages, Features, and Projects

Keyword Optional... Configure option(s)
...package
Sybase Sybase libraries --without-sybase, --with-sybase-local(=DIR), --with-sybase-new
FreeTDS FreeTDS libraries --without-ftds, --with-ftds=DIR
Fast-CGI Fast-CGI library --without-fastcgi
FLTK the Fast Light ToolKit --without-fltk, --with-fltk=DIR
wxWindows | wxWindows --without-wxwin, --with-wxwin=DIR
C-Toolkit NCBI C Toolkit --without-ncbi-c
SSSDB NCBI SSS DB library --without-sssdb, --without-sss
SSSUTILS NCBI SSS UTILS library --without-sssutils, --without-sss
GEO NCBI GEO libraries --without-geo
SP SP libraries --without-sp
PubMed NCBI PubMed libraries --without-pubmed
ORBacus ORBacus CORBA --without-orbacus, --with-orbacus=DIR
...feature
MT multithreading is available --with-mt
...project(s)
serial ASN.1/XML serialization library and datatool | --without-serial
ctools projects based on the NCBI C toolkit --without-ctools
gui projects that use the wxWindows GUI package | --without-gui
objects libraries to serialize ASN.1/XML objects --with-objects
app standalone applications like ID1_FETCH --with-app
internal all internal projects --with-internal
local lbsm IPC with locally running LBSMD --without-local-lbsm

Working with Makefiles

Page 8

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 3. Flags

Macro

Source

Synopsis

CFLAGS

$CFLAGS

C compiler flags

FAST CFLAGS

$FAST CFLAGS

(*) C compiler flags to generate faster code

CXXFLAGS

$CXXFLAGS

C++ compiler flags

FAST_CXXFLAGS

SFAST_CXXFLAGS

(¥) C++ compiler flags to generate faster code

CPPFLAGS $SCPPFLAGS C/C++ preprocessor flags

DEPFLAGS $DEPFLAGS Flags for file dependency lists

LDFLAGS SLDFLAGS Linker flags

LIB_OR_DLL @LIB_OR_DLL@ Specify whether to build a library as static or dynamic
STATIC @STATIC@ Library suffix to force static linkage (see example)

Working with Makefiles

Page 9

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 4. System and third-party packages

Macro Source Synopsis
LIBS SLIBS Default libraries to link with
PRE_LIBS $PRE_LIBS ??? Default libraries to link with first

THREAD_LIBS

$THREAD_LIBS

Thread library (system)

NETWORK_LIBS

$NETWORK_LIBS

Network library (system)

MATH_LIBS $MATH_LIBS Math library (system)
KSTAT LIBS SKSTAT_LIBS KSTAT library (system)
RPCSVC_LIBS $RPCSVC_LIBS RPCSVC library (system)
SYBASE INCLUDE $SYBASE INCLUDE SYBASE headers
SYBASE LIBS $SYBASE LIBS SYBASE libraries

FASTCGI_INCLUDE

$FASTCGI_INCLUDE

Fast-CGI headers

FASTCGI_LIBS

$FASTCGI_LIBS

Fast-CGI libraries

NCBI_C_INCLUDE

$NCBI_C_INCLUDE

NCBI C toolkit headers

NCBI_C_LIBPATH

$NCBI_C_LIBPATH

Path to the NCBI C Toolkit libraries

NCBI_C_ncbi

$NCBI_C_ncbi

NCBI C CoreLib

NCBI_SSS_INCLUDE

$NCBI_SSS_INCLUDE

NCBI SSS headers

NCBI_SSS_LIBPATH

$NCBI_SSS_LIBPATH

Path to NCBI SSS libraries

NCBI_PM_PATH

$NCBI_PM_PATH

Path to the PubMed package

ORBACUS_LIBPATH

SORBACUS_LIBPATH

Path to the ORBacus CORBA libraries

ORBACUS_INCLUDE

$ORBACUS_LIBPATH

Path to the ORBacus CORBA headers

Working with Makefiles

Page 10

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 5. Compiler, Linker, and other development Tools

Macro Source Synopsis

cC $CC C compiler

CXX $CXX C++ compiler

LINK $CXX Linker (C++-aware)

CPP $CPP C preprocessor

CXXCPP $CXXCPP C++ preprocessor

AR SAR Library archiver

STRIP $STRIP Tool to strip symbolic info from binaries

RM rm -f Remove file(s)

RMDIR rm -rf Remove file(s) and directory(ies) recursively

COPY cp-p Copy file (preserving the modification time)

CC_FILTER @CC_FILTER@ Filters for the C compiler

CXX_FILTER | @CXX_FILTER@ | Filters for the C++ compiler

CHECK_ARG | @CHECK_ARG@

LN_S @LN_S@ Make a symbolic link if possible; otherwise, hard-link or copy
BINCOPY @BINCOPY@ Copy a library or an executable -- but only if it was changed

Working with Makefiles

Page 11

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

6: Project Creation and Management

Last Update: July 10, 2013.

Overview
The overview for this chapter consists of the following topics:
+ Introduction

« Chapter Outline

Introduction

This chapter discusses the setup procedures for starting a new project such as the location of
makefiles, header files, source files, etc. It also discusses the SVN tree structure and how to use
SVN for tracking your code changes, and how to manage the development environment.

Chapter Outline

The following is an outline of the topics presented in this chapter:

+ Starting New Projects

— New Projects: Location and File Structure

4 new project: Starting a New Project outside the C++ Toolkit Tree
4 Creating a New Project Inside the C++ Toolkit Tree
— Projects and the Toolkit's SVN Tree Structure

— Creating source and include SVN dirs for a new C++ project

— Starting New Modules

— Meta-makefiles (to provide multiple and/or recursive builds)

— Project makefiles
4 Example 1: Customized makefile to build a library
4 Example 2: Customized makefile to build an application
4 Example 3: User-defined makefile to build... whatever
— An example of the NCBI C++ makefile hierarchy ("corelib/")
* Managing the Work Environment

— Obtaining the Very Latest Builds
— Working in a separate directory

4 Setting up Directory Location
¢ The Project's Makefile
¢ Testing your setup
— Working Independently In a C++ Subtree

— Working within the C++ source tree

¢ Checkout the source tree and configure a build directory

4 The project's directories and makefiles
¢ Makefile.in meta files

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

An example meta-makefile and its associated project makefiles

Executing make
Custom project makefile: Makefile.myProj

Library project makefile: Makefile.myProj.lib

Application project makefile: Makefile.myProj.app
Defining and running tests

¢ The configure scripts
— Working with the serializable object classes

¢ Serializable Objects
¢ Locating and browsing serializable objects in the C++ Toolkit

® & & & o o

4 Base classes and user classes

¢ Adding methods to the user classes

* Checking out source code, configuring the working
environment, building the libraries.

+ Adding methods

Starting New Projects

The following assumes that you have all of the necessary Toolkit components. If you need to
obtain part or the Toolkit's entire source tree, consult the FTP instructions or SVN checkout
procedures. Please visit the Getting Started page for a broad overview of the NCBI C++ Toolkit
and its use.

The following topics are discussed in this section:

* New Projects: Location and File Structure

— new_project: Starting a New Project outside the C++ Toolkit Tree
— Creating a New Project Inside the C++ Toolkit Tree

* Projects and the Toolkit's SVN Tree Structure

* Creating source and include SVN dirs for a new C++ project

» Starting New Modules

+ Meta-makefiles (to provide multiple and/or recursive builds)

+ Project makefiles
— Example 1: Customized makefile to build a library
— Example 2: Customized makefile to build an application
— Example 3: User-defined makefile to build... whatever

« An example of the NCBI C++ makefile hierarchy ("corelib/")

New Projects: Location and File Structure

Before creating the new project, you must decide if you need to work within a C++ source tree
(or subtree) or merely need to link with the Toolkit libraries and work in a separate directory.
The later case is simpler and allows you to work independently in a private directory, but it is
not an option if the Toolkit source, headers, or makefiles are to be directly used or altered
during the new project's development.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

Work in the Full Toolkit Source Tree
Work in a Toolkit Subtree

Work in a Separate Directory

Regardless of where you build your new project, it must adopt and maintain a particular
structure. Specifically, each project's source tree relative to SNCBI/c++ should contain:

include/*.hpp -- project's public headers
src/*.{cpp, hpp} -- project's source files and private headers

src/Makefile.in -- a meta-makefile template to specify which local projects (described
in Makefile.*.in) and sub-projects (located in the project subdirectories) must be built

src/Makefile.<project name>.{lib, app}[.in] -- one or more customized makefiles to
build a library or an application

src/Makefile.*[.in] -- "free style" makefiles (if any)

sub-project directories (if any)

The following topics are discussed in this section:

new_project: Starting a New Project outside the C++ Toolkit Tree
Creating a New Project Inside the C++ Toolkit Tree

new_project: Starting a New Project outside the C++ Toolkit Tree

Script usage:

new project <name> <type>[/<subtype>] [builddir]

NOTE: in NCBI, you can (and should) invoke common scripts simply by name - i.e. without
path or extension. The proper script located in the pre-built NCBI C++ toolkit directory will
be invoked.

This script will create a startup makefile for a new project which uses the NCBI C++ Toolkit
(and possibly the C Toolkit as well). Replace <type> with lib for libraries or app for
applications.

Sample code will be included in the project directory for new applications. Different samples
are available for type=app|[/basic] (a command-line argument demo application based on the
corelib library), type=app/cgi (for a CGI or Fast-CGI application), type=app/objmgr (for an
application using the Object Manager), type=app/objects (for an application using ASN.1
objects), and many others.

You will need to slightly edit the resultant makefile to:

specify the name of your library (or application)
specify the list of source files going to it
modify some preprocessor, compiler, etc. flags, if needed

modify the set of additional libraries to link to it (if it's an application), if needed

For example:

new project foo app/basic

creates a model makefile Makefile.foo app to build an application using tools and flags hard-
coded in SNCBI/c++/Debug/build/Makefile.mk, and headers from SNCBI/c++/include/. The

Project Creation and Management

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 4

file /tmp/foo/foo.cpp is also created; you can either replace this with your own foo.cpp or
modify its sample code as required.

Now, after specifying the application name, list of source files, etc., you can just go to the
created working directory foo/ and build your application using:

make -f Makefile.foo app

You can easily change the active version of NCBI C++ Toolkit by manually setting variable
$(builddir) in the file Makefile.foo_app to the desired Toolkit path, e.g.,

builddir = $(NCBI)/c++/GCC-Release/build

In many cases, you work on your own project which is a part of the NCBI C++ tree, and you
do not want to check out, update and rebuild the whole NCBI C++ tree. Instead, you just want
to use headers and libraries of the pre-built NCBI C++ Toolkit to build your project. In these
cases, use the import_project script instead of new_project.

Note for users inside NCBI: To be able to view debug information in the Toolkit libraries for
Windows builds, you will need to have the S: drive mapped to \\snowman\win-coremake\Lib.
By default, new_project will make this mapping for you if it's not already done.

Creating a New Project Inside the C++ Toolkit Tree

To create your new project (e.g., "bar_proj") directories in the NCBI C++ Toolkit source tree
(assuming that the entire NCBI C++ Toolkit has been checked out to directory foo/c++/):

cd foo/ct+/include && mkdir bar proj && svn add bar proj

cd foo/ct+/src && mkdir bar proj && svn add bar proj

From there, you can now add and edit your project C++ files.

NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level
meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Projects and the Toolkit's SVN Tree Structure

(For the overall NCBI C++ SVN tree structure see SVN details.)

Even if you work outside of the C++ tree, it is necessary to understand how the Toolkit uses
makefiles, meta-makefiles, and makefile templates, and the SVN tree structure.

The standard SVN location for NCBI C++/STL projects is $SVNROOT/internal/c++/. Public
header files (*.hpp, *.inl) of all projects are located below the $SVNROOT/internal/c++/
include/ directory. $SSVNROOT/internal/c++/src/ directory has just the same hierarchy of
subdirectories as .../include/, and its very top level contains:

« Templates of generic makefiles (Makefile.*.in):

— Makefile.in -- makefile to perform a recursive build in all project
subdirectories

— Makefile.meta.in -- included by all makefiles that provide both local and
recursive builds

— Makefile.lib.in -- included by all makefiles that perform a "standard" library
build, when building only static libraries.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

— Makefile.dll.in -- included by all makefiles that perform a "standard" library
build, when building only shared libraries.

— Makefile.both.in -- included by all makefiles that perform a "standard" library
build, when building both static and shared libraries.

— Makefile.lib.tmpl.in -- serves as a template for the project customized
makefiles (Makefile.*.1ib[.in]) that perform a "standard" library build

— Makefile.app.in -- included by all makefiles that perform a "standard"
application build

— Makefile.lib.tmpl.in -- serves as a template for the project customized
makefiles (Makefile.*.app[.in]) that perform a "standard" application build

— Makefile.rules.in, Makefile.rules with autodep.in -- instructions for building
object files; included by most other makefiles

— Makefile.mk.in -- included by all makefiles; sets a lot of configuration
variables

+ The contents of each project are detailed above. If your project is to become part of
the Toolkit tree, you need to ensure that all makefiles and Makefile*.in templates are
available so the master makefiles can properly configure and build it (see "Meta-
Makefiles" and "Project Makefiles" below). You will also need to prepare SVN
directories to hold the new source and header files.

Creating source and include SVN dirs for a new C++ project

To create your new project (e.g., "bar_proj") directories in the NCBI C++ SVN tree to directory
foo/ct++/):

cd foo/ct+/include && mkdir bar proj && SVN add -m "Project Bar" bar proj
cd foo/ct+/src && mkdir bar proj && SVN add -m "Project Bar" bar proj

Now you can add and edit your project C++ files in there.

NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level
meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Starting New Modules

Projects in the NCBI C++ Toolkit consist of “modules”, which are most often a pair of source
(*.cpp) and header (*.hpp) files. To help create new modules, template source and header files
may be used, or you may modify the sample code generated by the script new_project. The
template source and header files are .../doc/public/framewrk.cpp and .../doc/public/
framewrk.hpp. The template files contain a standard startup framework so that you can just
cut-and-paste them to start a new module (just don't forget to replace the "framewrk" stubs by
your new module name).

« Header file (*.hpp) -- API for the external users. Ideally, this file contains only (well-
commented) declarations and inline function implementations for the public interface.
No less, and no more.

* Source file (*.cpp) -- Definitions of non-inline functions and internally used things
that should not be included by other modules.

On occasion, a second private header file is required for good encapsulation. Such second
headers should be placed in the same directory as the module source file.

Project Creation and Management

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

Each and every source file must include the NCBI disclaimer and (preferably) Subversion
keywords (e.g. $1d$). Then, the header file must be protected from double-inclusion, and it
must define any inlined functions.

Meta-makefiles (to provide multiple and/or recursive builds)

All projects from the NCBI C++ hierarchy are tied together by a set of meta-makefiles which
are present in all project source directories and provide a uniform and easy way to perform
both local and recursive builds. See more detail on the Working with Makefiles page. A typical
meta-makefile template (e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks like that:

Makefile.bar ul, Makefile.bar u2 ...
USR_PROJ = bar ul bar u2 ...

Makefile.bar 11.1ib, Makefile.bar 12.1lib ...
LIB PROJ = bar 11 bar 12 ...

Makefile.bar al.app, Makefile.bar aZ2.app ...
APP PROJ = bar_al bar 12 ...

SUB_PROJ = app sub projl sub proj2

srcdir = @srcdir@

include @builddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along
with a set of three sub-projects that can be made. The mandatory final two lines "sredir =
@sredir@ ; include @builddir@/Makefile.meta" define the standard build targets.

Project makefiles

Just like the configurable template Makefile.meta.in is used to ease and standardize the writing
of meta-makefiles, so there are templates to help in the creation of "regular" project makefiles
to build a library or an application. These auxiliary template makefiles are described on the
"Working with Makefiles" page and listed above. The configure'd versions of these templates
get put at the very top of a build tree.

In addition to the meta-makefile that must be defined for each project, a customized makefile
Makefile.<project name>.[app|lib] must also be provided. The following three sections give
examples of customized makefiles for a library and an application, along with a case where a
user-defined makefile is required.

You have great latitude in specifying optional packages, features and projects in makefiles.
The macro REQUIRES in the examples is one way to allows you access them. See the
"Working with Makefiles" page for a complete list; the configuration page gives the
corresponding configure options.

The following examples are discussed in this section:
« Example 1: Customized makefile to build a library

« Example 2: Customized makefile to build an application
« Example 3: User-defined makefile to build... whatever

Example 1: Customized makefile to build a library

Here is an example of a customized makefile to build library libxmylib.a from two source files
xmy_srcl.cpp and xmy_src2.c, and one pre-compiled object file some objl.o. To make the
example even more realistic, we assume that the said source files include headers from the
NCBI C Toolkit.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

LIB = xmylib

SRC = xmy_srcl xmy src2
OBJ = some_objl
REQUIRES =
CFLAGS = $(ORIG _CFLAGS) -abc -DFOOBAR NOT CPLUSPLUS
CXXFLAGS = $(FAST CXXFLAGS) -xy=z

CPPFLAGS = $(ORIG _CPPFLAGS) -UFOO -DP1 PROJECT -I$(NCBI C INCLUDE)

Xrequirement

+ Skip building this library if xrequirement (an optional package or project) is disabled
or unavailable.

+ Compile xmy_srcl.cpp using the C++ compiler $(CXX) with the flags $
(FAST CXXFLAGS) -xyz $(CPPFLAGS), which are the C++ flags for faster code,
some additional flags specified by the user, and the original preprocessor flags.

* Compile xmy_src2.c using the C compiler $(CC) with the flags $(ORIG_CFLAGS) -
abc -DFOOBAR _NOT CPLUSPLUS $(CPPFLAGS), which are the original C flags,
some additional flags specified by the user, and the original preprocessor flags.

+ Using $(AR) and $(RANLIB) [$(LINK DLL) if building a shared library], compose
the library libxmylib.a [libxmylib.so] from the resultant object files, plus the pre-
compiled object file some objl.o.

* Copy libxmylib.* to the top-level lib/ directory of the build tree (for the later use by
other projects).

This customized makefile should be referred to as xmylib in the LIB_ PROJ macro of the
relevant meta-makefile. As usual, Makefile.mk will be implicitly included.

This customized makefile can be used to build both static and dynamic (DLL) versions of the
library. To encourage its build as a DLL on the capable platforms, you can explicitly specify:

LIB OR DLL = dll
or

LIB_OR DLL = both

Conversely, if you want the library be always built as static, specify:

LIB OR DLL = lib

Example 2: Customized makefile to build an application

Here is an example of a customized makefile to build the application my_exe from three source
files, my main.cpp, my_srcl.cpp, and my_src2.c. To make the example even more realistic,
we assume that the said source files include headers from the NCBI SSS DB packages, and
the target executable uses the NCBI C++ libraries libxmylib.* and libxncbi.*, plus NCBI SSS
DB, SYBASE, and system network libraries. We assume further that the user would prefer to
link statically against libxmylib if building the toolkit as both shared and static libraries
(configure --with-dll --with-static ...), but is fine with a shared libxncbi.

APP = my_exe

SRC = my main my srcl my src2
OBJ = some_obj
LIB = xmylib$ (STATIC) xncbi

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

REQUIRES = xrequirement
CPPFLAGS = $(ORIG7CPPFLAGS) $(NCB17555DB71NCLUDE)
LIBS = $(NCB175$SDB7LIBS) $(SYBASE7LIBS) $(NETWORK7LIBS) $(ORIG7LIBS)

+ Skip building this library if xrequirement (an optional package or project) is disabled
or unavailable.

+ Compile my main.cpp and my_srcl.cpp using the C++ compiler $(CXX) with the
flags $(CXXFLAGS) (see Note below).

* Compile my_src2.c using the C compiler $(CC) with the flags $(CFLAGS) (see Note
below).

+ Using $(CXX) as a linker, build an executable my exe from the object files
my_main.o, my srcl.o, my src2.o, the precompiled object file some obj.o, NCBI C
++ Toolkit libraries libxmylib.a and libxncbi.*, and NCBI SSS DB, SYBASE, and
system network libraries (see Note below).

« Copy the application to the top-level bin/ directory of the build tree (for later use by
other projects).

Note: Since we did not redefine CFLAGS, CXXFLAGS, or LDFLAGS, their default values
ORIG_*FLAGS (obtained during the build tree configuration) will be used.

This customized makefile should be referred to as my_exe in the APP_PROJ macro of the
relevant meta-makefile. Note also, that the Makefile.mk will be implicitly included.

Example 3: User-defined makefile to build... whatever

In some cases, we may need more functionality than the customized makefiles (designed to
build libraries and applications) can provide.

So, if you have a "regular" non-customized user makefile, and you want to make from it, then
you must enlist this user makefile in the USR_PROJ macro of the project's meta-makefile.

Now, during the project build (and before any customized makefiles are processed), your
makefile will be called with one of the standard make targets from the project's build directory.
Additionally, the builddir and srcdir macros will be passed to your makefile (via the make
command line).

In most cases, it is necessary to know your "working environment"; i.e., tools, flags and paths
(those that you use in your customized makefiles). This can be easily done by including
Makefile.mk in your makefile.

Shown below is a real-life example of a user makefile:

* Dbuild an auxiliary application using the customized makefile Makefile.hc_gen obj.app
(this part is a tricky one...)

« use the resultant application $(bindir)/hc_gen_obj to generate the source and header
files humchrom_dat.[ch] from the data file humchrom.dat

+ use the script $(top_srcdir)/scripts/if_diff.sh to replace the previous copies (if any) of
humchrom_dat.[ch] with the newly generated versions if and only if the new versions
are different (or there were no old versions).

And, of course, it provides build rules for all the standard make targets.

File $(top_srcdir)/src/internal/humchrom/Makefile.hc_gen_obj:

Build a code generator for hard-coding the chrom data into

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 9

an obj file
Generate header and source "humchrom dat.[ch]" from data

file "humchrom.dat"

HH H H H

Deploy the header to the compiler-specific include dir
Compile source code
FHEHHFHH AR R R
include $(builddir)/Makefile.mk
BUILD HC GEN OBJ = $(MAKE) -f "$(builddir)/Makefile.app.tmpl" \
srcdir="$ (srcdir)" TMPL="hc gen obj" $ (MFLAGS)
all r: all
all: build hc _gen obj humchrom dat.dep
purge r: purge
purge: x_clean
$ (BUILD HC GEN OBJ) purge
clean_r: clean
clean: x clean
$ (BUILD HC GEN OBJ) clean
x _clean:
-rm -f humchrom dat.h
-rm -f humchrom dat.c
build hc_gen obj:
$(BUILD HC GEN OBJ) all
humchrom dat.dep: $(srcdir)/data/humchrom.dat $(bindir)/hc gen obj
-cp -p humchrom dat.c humchrom dat.save.c
$ (bindir) /hc_gen obj -d $(srcdir)/data/humchrom.dat
-f humchrom dat
$ (top_srcdir)/scripts/if diff.sh "mv" humchrom dat.h
$ (incdir) /humchrom dat.h
-rm humchrom dat.h
$ (top_srcdir) /scripts/if diff.sh "mv" humchrom dat.c
humchrom dat.save.c
mv humchrom_dat.save.c humchrom dat.c

touch humchrom dat.dep

An example of the NCBI C++ makefile hierarchy ("corelib/")

See also the source and build hierarchy charts.

c++/src/Makefile.in:

SUB_PROJ = corelib cgi html @serial@ @internall
include @builddir@/Makefile.meta

ct++/src/corelib/Makefile.in:
LIB PROJ = corelib
SUB_PROJ = test

srcdir = @srcdirQ@

include @builddir@/Makefile.meta

c++/src/corelib/Makefile.corelib.lib:

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_start

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 10

SRC = ncbidiag ncbiexpt ncbistre ncbiapp ncbireg ncbienv ncbistd

LIB = xncbi

ct++/src/corelib/test/Makefile.in:

APP _PROJ = coretest

srcdir = @srcdirQ@
include @builddir@/Makefile.meta

Managing the Work Environment

The following topics are discussed in this section:

* Obtaining the Very Latest Builds
» Working in a separate directory

Setting up Directory Location
The Project's Makefile

Testing your setup

* Working Independently In a C++ Subtree

» Working within the C++ source tree

Checkout the source tree and configure a build directory

The project's directories and makefiles

Makefile.in meta files

An example meta-makefile and its associated project makefiles

Executing make
Custom project makefile: Makefile.myProj

Library project makefile: Makefile.myProj.lib

Application project makefile: Makefile.myProj.app

Defining and running tests
The configure scripts

« Working with the serializable object classes

Serializable Objects

Locating and browsing serializable objects in the C++ Toolkit
Base classes and user classes

Adding methods to the user classes

4 Checking out source code, configuring the working environment,
building the libraries.

4 Adding methods

Obtaining the Very Latest Builds

Each new nightly build is available in the $NCBI/ct++.by-date/{date} subdirectory. This is
done regardless of whether the build succeeds or not.

There are defined symlinks into this directory tree. They include:
+ §NCBI/ct++ - Symbolic link to SNCBI/c++.production.

Project Creation and Management

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 11

$NCBI/c++.potluck - The most recent nightly build. It contains whatever libraries and
executables have managed to build, and it can miss some of the libraries and/or
executables. Use it if you desperately need yesterday's bug fix and do not care of the
libraries which are missing.

$NCBI/c++.metastable - The most recent nightly build for which the compilation (but
not necessarily the test suite) succeeded in all configurations on the given platform.
Please note that some projects, including the entire "gui" tree, are considered
expendable due to their relative instability and therefore not guaranteed to be present.

$NCBI/c++.current - Symbolic link to SNCBI/c++.metastable.

$NCBI/c++.stable - The most recent nightly build for which the nightly build
(INCLUDING the gui projects) succeeded AND the test suite passed all critical tests
on the given platform. This would be the preferred build most of the time for the
developers whose projects make use of the actively developed C++ Toolkit libraries.
It is usually relatively recent (usually no more than 1 or 2 weeks behind), and at the
same time quite stable.

$NCBI/c++.frozen - A "production candidate" build made out of the production
codebase. There are usually two such builds made for each version of production
codebase -- one is for the original production build, and another (usually made in about
2 months after the original production build) is the follow-up bugfix build.

$NCBI/ct++.production - The most recent production snapshot. This is determined
based on general stability of the Toolkit and it is usually derived off the codebase of
one of the prior "c++.stable" builds. Its codebase is the same for all platforms and
configurations. It is installed only on the major NCBI development platforms (Linux,
MS-Windows, and MacOS). It is the safest bet for long-term development. It changes
rarely, once in 1 to 3 months. Also, unlike all other builds mentioned here it is
guaranteed to be accessible for at least a year (or more), and its DLLs are installed
on all (including production) Linux hosts.

$NCBI/c++.prod-head - This build is for NCBI developers to quickly check their
planned stable component commits using import_project. It is based on the repository
path toolkit/production/candidates/production. HEAD — which is the HEAD SVN
revision of the C++ Stable Components on which the latest c++.production build was
based. It is available on 64-bit Linux.

$NCBI/c++.trial - This build is for NCBI developers to quickly check their planned
stable component commits using import_project. It is based on the repository path
toolkit/production/candidates/trial — which is usually a codebase for the upcoming
production build. It is available on 64-bit Linux.

Working in a separate directory

The following topics are discussed in this section:

Setting up Directory Location
The Project's Makefile

Testing your setup

Setting up Directory Location

There are two topics relevant to writing an application using the NCBI C++ Toolkit:

Where to place the source and header files for the project

How to create a makefile which can link to the correct C++ libraries

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 12

What you put in your makefile will depend on where you define your working directory. In
this discussion, we assume you will be working outside the NCBI C++ tree, say in a directory
called newproj. This is where you will write both your source and header files. The first step
then, is to create the new working directory and use the new_project script to install a makefile
there:

mkdir newproj
new project newproj app S$NCBI/c++/GCC-Debug/build

Created a model makefile "/home/user/newproj/Makefile.newproj app".
The syntax of the script command is:
new project <project name> <app | lib> [builddir]

where: - project_name is the name of the directory you will be working in - app (lib) is used
to indicate whether you will be building an application or a library - builddir (optional) specifies
what version of the pre-built NCBI C++ Toolkit libraries to link to

Several build environments have been pre-configured and are available for developing on
various platforms using different compilers, in either debug or release mode. These
environments include custom-made configuration files, makefile templates, and links to the
appropriate pre-built C++ Toolkit libraries. To see a list of the available environments for the
platform you are working on, use: Is -d SNCBI/c++/*/build. For example, on Solaris, the build
directories currently available are shown in Table 1.

In the example above, we specified the GNU compiler debug environment: SNCBI/c++/GCC-
Debug/build. For a list of currently supported compilers, see the release notes. Running the
new_project script will generate a ready-to-use makefile in the directory you just created. For
a more detailed description of this and other scripts to assist you in the set-up of your working
environment, see Starting a new C++ project.

The Project's Makefile

The file you just created with the above script will be called Makefile.newproj_app. In addition
to other things, you will see definitions for: - $(builddir) - a path to the build directory specified
in the last argument to the above script - $(srcdir) - the path to your current working directory
(".") - $(APP) - the application name - $(OBJ) - the names of the object modules to build and
link to the application - $(LIB) - specific libraries to link to in the NCBI C++ Toolkit - $(LIBS)
- all other libraries to link to (outside the C++ Toolkit)

$(builddir)/lib specifies the library path (-L), which in this case points to the GNU debug
versions of the NCBI C++ Toolkit libraries. $(LIB) lists the individual libraries in this path
that you will be linking to. Minimally, this should include xncbi - the library which implements
the foundational classes for the C++ tools. Additional library names (e.g. xhtml, xcgi, etc.) can
be added here.

Since the shell script assumes you will be building a single executable with the same name as
your working directory, the application is defined simply as newproj. Additional targets to
build can be added in the area indicated towards the end of the file. The list of objects (OBJ)
should include the names (without extensions) of all source files for the application (APP).
Again, the script makes the simplest assumption, i.e. that there is a single source file named
newproj.cpp. Additional source names can be added here.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=release_notes

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 13

Testing your setup

For a very simple application, this makefile is ready to be run. Try it out now, by creating the
file newproj.cpp:

// File name: newproj.cpp

#include <iostream>

using namespace std;

int main() {

cout << "Hello again, world" << endl;

}
and running;:
make -f Makefile.newproj app

Of course, it wasn't necessary to set up the directories and makefiles to accomplish this much,
as this example does not use any of the C++ classes or resources defined in the NCBI C++
Toolkit. But having accomplished this, you are now prepared to write an actual application,
such as described in Writing a simple application project

Most real applications will at a minimum, require that you #include ncbistd.hpp in your header
file. In addition to defining some basic NCBI C++ Toolkit objects and templates, this header
file in turn includes other header files that define the C Toolkit data types, NCBI namespaces,
debugging macros, and exception classes. A set of template files are also provided for your
use in developing new applications.

Working Independently In a C++ Subtree

An alternative to developing a new project from scratch is to work within a subtree of the main
NCBI C++ source tree so as to utilize the header, source, and make files defined for that subtree.
One way to do this would be to check out the entire source tree and then do all your work within
the selected subtree(s) only. A better solution is to create a new working directory and check
out only the relevant subtrees into that directory. This is somewhat complicated by the
distributed organization of the C++ SVN tree: header files are (recursively) contained in an
include subtree, while source files are (recursively) contained in a src subtree. Thus, multiple
checkouts may be required to set things up properly, and the customized makefiles
(Makefile.*.app) will need to be modified. The shell script import project will do all of this
for you. The syntax is:

import project subtree name [builddir]

where:
+ subtree_name is the path to a selected directory inside [internal/]c++/src/

* Dbuilddir (optional) specifies what version of the pre-built NCBI C++ Toolkit libraries
to link to.

As a result of executing this shell script, you will have a new directory created with the
pathname ./[internal/]Jc++/ whose structure contains "slices" of the original SVN tree.
Specifically, you will find:

./linternal/]c++/include/subtree name

./linternal/]c++/src/subtree name

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 14

The src and include directories will contain all of the requested subtree's source and header
files along with any hierarchically defined subdirectories. In addition, the script will create
new makefiles with the suffix * app. These makefiles are generated from the original
customized makefiles (Makefile.*.app) located in the original src subtrees. The customized
makefiles were designed to work only in conjunction with the build directories in the larger
NCBI C++ tree; the newly created makefiles can be used directly in your new working
directories.

You can re-run import_project to add multiple projects to your tree.

Note: If you'd like to import both internal and public projects into a single tree, you'll need to
use the -topdir option, which will locate the public project within the internal tree, for example:

import project internal/demo/misc/xmlwrapp

import project -topdir trunk/internal/c++ misc/xmlwrapp
pushd trunk/internal/c++/src/misc/xmlwrapp

make

popd

pushd trunk/internal/c++/src/internal/demo/misc/xmlwrapp

make

In this case, your public projects will be located in the internal tree. You must build in each
imported subtree, in order from most-dependent to least-dependent so that the imported
libraries will be linked to rather than the pre-built libraries.

The NCBI C++ Toolkit project directories, along with the libraries they implement and the
logical modules they entail, are summarized in the Library Reference.

Two project directories, internal and objects, may have some subdirectories for which the
import_project script does not work normally, if at all. The internal subdirectories are used for
in-house development, and the author of a given project may customize the project for their
own needs in a way that is incompatible with import project. The objects subdirectories are
used as the original repositories for ASN.1 specifications (which are available for use in your
application as described in the section Processing ASN.1 Data), and subsequently, for writing
the object definitions and implementations created by the datatool program. Again, these
projects can be altered in special ways and some may not be compatible with import_project.
Generally, however, import_project should work well with most of these projects.

Working within the C++ source tree

The following topics are discussed in this section:

* Checkout the source tree and configure a build directory

* The project's directories and makefiles

* Makefile.in meta files

« An example meta-makefile and its associated project makefiles

« Executing make
* Custom project makefile: Makefile.myProj

» Library project makefile: Makefile.myProj.lib

« Application project makefile: Makefile.myProj.app
* Defining and running tests

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 15

« The configure scripts

Most users will find that working in a checked-out subtree or a private directory is preferable
to working directly in the C++ source tree. There are two good reasons to avoid doing so:

* Building your own versions of the extensive libraries can be very time-consuming.

« There is no guarantee that the library utilities your private code links to have not
become obsolete.

This section is provided for those developers who must work within the source tree. The Library
Reference provides more complete and technical discussion of the topics reviewed here, and
many links to the relevant sections are provided. This page is provided as an overview of
material presented in the Library Reference and on the Working with Makefiles pages.

Checkout (*) the source tree and configure a build directory

To checkout full Toolkit tree:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++ c++
or, if you don't need internal projects:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++ c++

Once you have done so, you will need to run one of the configure scripts in the Toolkit's root
directory. For example, to configure your environment to work with the gcc compiler (on any
platform), just run: ./configure.

Users working under Windows should consult the MS Visual C++ section in the chapter on
Configuring and Building the Toolkit.

The configure script is a multi-platform configuration shell script (generated from configure.in
using autoconf). Here are some pointers to sections that will help you configure the build
environment:

« Wrapper scripts supporting various platforms
* Optional configuration flags

The configure script concludes with a message describing how to build the C++ Toolkit
libraries. If your application will be working with ASN.1 data, use the --with-objects flag in
running the configure script, so as to populate the include/objects and src/objects subdirectories
and build the objects libraries. The objects directories and libraries can also be updated
separately from the rest of the compilation, by executing make inside the build/objects
directory. Prior to doing so however, you should always verify that your build/bin directory
contains the latest version of datatool.

The project's directories and makefiles

To start a new project ("myProj"), you should begin by creating both a src and an include
subtree for that project inside the C++ tree. In general, all header files that will be accessed by
multiple source modules outside the project directory should be placed in the include directory.
Header files that will be used solely inside the project's src directory should be placed in the
src directory, along with the implementation files.

In addition to the C++ source files, the src subtrees contain meta-makefiles named Makefile.in,
which are used by the configure script to generate the corresponding makefiles in the build
subtrees. Figure 1 shows slices of the directory structure reflecting the correspondences

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=part3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 16

between the meta-makefiles in the src subtrees and makefiles in the build subtrees. Figure 2 is
a sketch of the entire C++ tree in which these directories are defined.

During the configuration process, each of the meta-makefiles in the top-level of the src tree is
translated into a corresponding makefile in the top-level of the build tree. Then, for each project
directory containing a Makefile.in, the configure script will: (1) create a corresponding
subdirectory of the same name in the build tree if it does not already exist, and (2) generate a
corresponding makefile in the project's build subdirectory. The contents of the project's
Makefile.in in the src subdirectory determine what is written to the project's makefile in the
build subdirectory. Project subdirectories that do not contain a Makefile.in file are ignored by
the configure script.

Thus, you will also need to create a meta-makefile in the newly created src/myProj directory
before configuring your build directory to include the new project. The configure script will
then create the corresponding subtree in the build directory, along with a new makefile
generated from the Makefile.in you created. See Makefile Hierarchy (Chapter 4, Figure 1) and
Figure 1.

Makefile.in meta files

The meta-makefile myProj/Makefile.in should define at least one of the following macros:

« USR PROJ (optional) - a list of names for user-defined makefiles.
This macro is provided for the usage of ordinary stand-alone makefiles which do not
utilize the make commands contained in additional makefiles in the top-level build
directory. Each p i listed in USR_PROJ=p 1 ...p N must have a corresponding
Makefile.p_i in the project's source directory. When make is executed, the make
directives contained in these files will be executed directly to build the targets as
specified.

« LIB PROJ (optional) - a list of names for library makefiles.
For each library 1 i listed in LIB_PROJ=1 1 ...1 N, you must have created a
corresponding project makefile named Makefile.l_i.lib in the project's source
directory. When make is executed, these library project makefiles will be used along
with Makefile.lib and Makefile.lib.tmpl (located in the top-level of the build tree) to
build the specified libraries.

« APP_PROIJ (optional) - a list of names for application makefiles.
Similarly, each application (p1, p2, ..., pN) listed under APP_PROJ must have a
corresponding project makefile named Makefile.p*.app in the project's source
directory. When make is executed, these application project makefiles will be used
along with Makefile.app and Makefile.app.tmpl to build the specified executables.

« SUB_PROIJ (optional) - a list of names for subproject directories (used on recursive
makes).
The SUB_PROJ macro is used to recursively define make targets; items listed here
define the subdirectories rooted in the project's source directory where make should
also be executed.

The Makefile.in meta file in the project's source directory defines a kind of road map that will
be used by the configure script to generate a makefile (Makefile) in the corresponding directory
of the build tree. Makefile.in does not participate in the actual execution of make, but rather,
defines what will happen at that time by directing the configure script in the creation of the
Makefile that will be executed (see also the description of Makefile targets).

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_build

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 17

An example meta-makefile and its associated project makefiles

A simple example should help to make this more concrete. Assuming that myProj is used to
develop an application named myProj, myProj/Makefile.in should contain the following:

###4#4## Example: src/myProj/Makefile.in
APP_PROJ = myProj

srcdir = @srcdird@

include @builddir@/Makefile.meta

The last two lines in Makefile.in should always be exactly as shown here. These two lines
specify make variable templates using the @var_name(@ syntax. When generating the
corresponding makefile in the build directory, the configure script will substitute each identifier
name bearing that notation with full path definitions.

The corresponding makefile in build/myProj generated by the configure script for this example
will then contain:

####### Example: myBuild/build/myProj/Makefile

Generated automatically from Makefile.in by configure.
APP_PROJ = myProj

srcdir = /home/zimmerma/internal/c++/src/myProj

include /home/zimmerma/internal/c++/myBuild/build/Makefile.meta

As demonstrated in this example, the @srcdir@ and @builddir@ aliases in the makefile
template have been replaced with absolute paths in the generated makefile, while the definition
of APP_PROJ is copied verbatim.

The only build target in this example is myProj. myProj is specified as an application - not a
library - because it is listed under APP_PROJ rather than under LIB_ PROJ. Accordingly, there
must also be a file named Makefile.myProj.app in the src/myProj directory. A project's
application makefile specifies:

« APP - the name to be used for the resulting executable

« OBIJ - alist of object files to use in the compilation

* LIB - a list of NCBI C++ Toolkit libraries to use in the linking
» LIBS - a list of other libraries to use in the linking

There may be any number of application or library makefiles for the project, Each application
should be listed under APP_PROJ and each library should be listed under LIB_PROJ in
Makefile.in. A suitable application makefile for this simple example might contain just the
following text:

####### Example: src/myProj/Makefile.myProj.app
APP = myProj

OBJ = myProj

LIB = xncbi

In this simple example, the APP_PROJ definition in Makefile.in is identical to the definitions
of both APP and OBJ in Makefile.myProj.app. This is not always the case, however, as the
APP_PROJ macro is used to define which makefiles in the src directory should be used during
compilation, while APP defines the name of the resulting executable and OBJ specifies the
names of object files. (Project makefiles for applications are described in more detail below.)

Project Creation and Management

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Executing make

Page 18

Given these makefile definitions, executing make all_r in the build project subdirectory
indirectly causes build/Makefile.meta to be executed, which sets the following chain of events
in motion:

1

For each proj_name listed in USR_PROJ, Makefile.meta first tests to see if
Makefile.proj _name is available in the current build directory, and if so, executes:

make -f Makefile.proj name builddir="$(builddir)"
srcdir="$(srcdir)" $(MFLAGS)

Otherwise, Makefile.meta assumes the required makefile is in the project's source
directory, and executes:

make -f $(srcdir)/Makefile.proj name builddir="$(builddir)" srcdir="$(srcdir)" $
(MFLAGS)

In either case, the important thing to note here is that the commands contained in the
project's makefiles are executed directly and are not combined with additional
makefiles in the top-level build directory. The aliased srcdir, builddir, and MFLAGS
are still available and can be referred to inside Makefile.proj name. By default, the
resulting libraries and executables are written to the build directory only.

For each lib_name listed in LIB_PROJ,
make -f $(builddir)/Makefile.lib.tmpl

is executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/
Makefile.lib_name.lib, and $(builddir)/Makefile.lib should be included in the
generated makefile commands that actually get executed. The resulting libraries are
written to the build subdirectory and copied to the lib subtree.

For each app_name listed in APP_PROJ,
make -f $(builddir)/Makefile.app.tmpl

is executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/
Makefile.app_name.app, and $(builddir)/Makefile.app should be included in the
generated makefile commands that actually get executed. The resulting executables
are written to the build subdirectory and copied to the bin subtree.

For each dir_name listed in SUB_PROJ (on make all r),

cd dir_name
make all r

is executed. Steps (1) - (3) are then repeated in the project subdirectory.

More generally, for each subdirectory listed in SUB_PROJ, the configure script will create a
relative subdirectory inside the new build project directory, and generate the new subdirectory's
Makefile from the corresponding meta-makefile in the src subtree. Note that each subproject
directory must also contain its own Makefile.in along with the corresponding project makefiles.
The recursive make commands, make all_r, make clean r, and make purge r all refer to this

definition of the subprojects to define what targets should be recursively built or removed.

Project Creation and Management

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 19

Custom project makefile: Makefile.myProj (*)

As described, regular makefiles contained in the project's src directory will be invoked from
the build directory if their suffixes are specified in the USR_PROJ macro. This macro is
originally defined in the project's src directory in the Makefile.in meta file, and is propagated
to the corresponding Makefile in the build directory by the configure script.

For example, if USR_PROJ = myProj in the build directory's Makefile, executing make will
cause Makefile.myProj (the project makefile) to be executed. This project makefile may be
located in either the current build directory or the corresponding src directory. In either case,
although the makefile is executed directly, references to the source or object files (contained
in the project makefile) must give complete paths to those files. In the first case, make is invoked
as: make -f Makefile.myProj, so the makefile is located in the current working (build) directory
but the source files are not. In the second case, make is invoked as:

make -f $(srcdir)/Makefile.myProj,

so both the project makefile and the source files are non-local. For example:

#H###4## Makefile.myProj
include $(NCBI)/ncbi.mk
use the NCBI default compiler for this platform
CC = $(NCBI CC)
along with the default include
INCPATH = $(NCBI7INCDIR)
and library paths
LIBPATH = $(NCBI_LIBDIR)
all: $(srcdir)/myProj.c
$(CC) -o myProj $(srcdir)/myProj.c $(NCBI CFLAGS) -I($SINCPATH) \
-L (SLIBPATH) -lncbi
cp -p myProj $(builddir)/bin
clean:
-rm myProj myProj.o
purge: clean
-rm $(builddir) /bin/myProj

will cause the C program myProj to be built directly from Makefile.myProj using the default
C compiler, library paths, include paths, and compilation flags defined in ncbi.mk. The
executables and libraries generated from the targets specified in USR_PROJ are by default
written to the current build directory only. In this example however, they are also explicitly
copied to the bin directory, and accordingly, the purge directives also remove the copied
executable.

Library project makefile: Makefile.myProj.lib (*¥)

Makefile.lib_name.lib should contain the following macro definitions:
* $(SRC) - the names of all source files to compile and include in the library
+ $(OBJ) - the names of any pre-compiled object files to include in the library
+ $(LIB) - the name of the library being built

In addition, any of the make variables defined in build/Makefile.mk, such as SCPPFLAGS,
$LINK, etc., can be referred to and/or redefined in the project makefile, e.g.:

Project Creation and Management

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 20

CFLAGS = $(ORIG CFLAGS) -abc -DFOOBAR NOT CPLUSPLUS
CXXFLAGS = $ (ORIG_CXXFLAGS) -xyz

CPPFLAGS = $ (ORIG _CPPFLAGS) -UFOO -DP1 PROJECT -I$(NCBI C INCLUDE)
LINK = purify $(ORIG LINK)

For an example from the Toolkit, see Makefile.corelib.lib, and for a documented example, see
example 1 above. This customized makefile can be used to build both static and dynamic (DLL)
versions of the library. To build as a DLL on the appropriate platforms, you can explicitly
specify:

LIB OR DLL = dll

Conversely, if you want the library to always be built as static, specify:

LIB OR DLL = lib

Application project makefile: Makefile.myProj.app (*)

Makefile.app _name.app should contain the following macro definitions:
* $(SRC) - the names of the object modules to build and link to the application
* $(OBJ) - the names of any pre-compiled object files to include in the linking
* $(LIB) - specific libraries in the NCBI C++ Toolkit to include in the linking
« $(LIBS) - all other libraries to link to (outside the C++ Toolkit)
* $(APP) - the name of the application being built

For example, if C Toolkit libraries should also be included in the linking, use:
LIBS = $(NCBI C LIBPATH) -lncbi $(ORIG_LIBS)

The project's application makefile can also redefine the compiler and linker, along with other
flags and tools affecting the build process, as described above for Makefile.*.lib files. For an
example from the Toolkit, see Makefile.coretest.app, and for a documented example, see

example 2 above.

Defining and running tests

The definition and execution of unit tests is controlled by the CHECK _CMD macro in the test
application's makefile, Makefile.app_name.app. If this macro is not defined (or commented
out), then no test will be executed. If CHECK CMD is defined, then the test it specifies will
be included in the automated test suite and can also be invoked independently by running "make
check".

To include an application into the test suite it is necessary to add just one line into its makefile
Makefile.app_name.app:

CHECK_CMD
or
CHECK CMD = command line to run application test

For the first form, where no command line is specified by the CHECK CMD macro, the
program specified by the makefile variable APP will be executed (without any parameters).

Project Creation and Management

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/Makefile.coretest.app

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 21

For the second form: If your application is executed by a script specified ina CHECK_CMD
command line, and it doesn't read from STDIN, then the script should invoke it like this:

SCHECK_EXEC app name argl arg2 ...

If your application does read from STDIN, then CHECK CMD scripts should invoke it like
this:

SCHECK_EXEC STDIN app name argl arg2 ...
Note: Applications / scripts in the CHECK CMD definition should not use ".", for example:
SCHECK_EXEC ./app name argl arg2 ... # Do not prefix app name with ./

Scripts invoked via CHECK _CMD should pass an exit code to the testing framework via the
exitcode variable, for example:

exitcode=$?

Ifyour test program needs additional files (for example, a configuration file, data files, or helper
scripts referenced in CHECK CMD), then set CHECK COPY to point to them:

CHECK COPY = filel file2 dirl dir2

Before the tests are run, all specified files and directories will be copied to the build or special
check directory (which is platform-dependent). Note that all paths to copied files and directories
must be relative to the application source directory.

By default, the application's execution time is limited to 200 seconds. You can set a new limit
using:

CHECK _TIMEOUT = <time in seconds>

If application continues execution after specified time, it will be terminated and test marked
as FAILED.

Ifyou'd like to get nightly test results automatically emailed to you, add your email address to
the WATCHERS macro in the makefile. Note that the WATCHERS macro has replaced the
CHECK_AUTHORS macro which had a similar purpose.

For information about using Boost for unit testing, see the "Boost Unit Test Framework"
chapter.

The configure scripts

A number of compiler-specific wrappers for different platforms are described in the chapter
on configuring and building. Each of these wrappers performs some pre-initialization for the
tools and flags used in the configure script before running it. The compiler-specific wrappers
are in the ct++/compilers directory. The configure script serves two very different types of
function: (1) it tests the selected compiler and environment for a multitude of features and
generates #include and #define statements accordingly, and (2) it reads the Makefile.in files
in the src directories and creates the corresponding build subtrees and makefiles accordingly.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 22

Frequently during development it is necessary to make minor adjustments to the Makefile.in
files, such as adding new projects or subprojects to the list of targets. In these contexts however,
the compiler, environment, and source directory structures remain unchanged, and configure
is actually doing much more work than is necessary. In fact, there is even some risk of failing
to re-create the same configuration environment if the user does not exactly duplicate the same
set of configure flags when re-running configure. In these situations, it is preferable to run an
auxiliary script named config.status, located at the top level of the build directory in a
subdirectory named status.

In contrast, changes to the src directory structure, or the addition/deletion of Makefile.in files,
all require re-running the configure script, as these actions require the creation/deletion of
subdirectories in the build tree and/or the creation/deletion of the associated Makefile in those
directories.

Working with the serializable object classes

The following topics are discussed in this section:

+ Serializable Objects
» Locating and browsing serializable objects in the C++ Toolkit

« Base classes and user classes

* Adding methods to the user classes

— Checking out source code, configuring the working environment, building the
libraries

— Adding methods

Serializable Objects

All of the ASN.1 data types defined in the C Toolkit have been re-implemented in the C++
Toolkit as serializable objects. Header files for these classes can be found in the include/
objects directories, and their implementations are located in the src/objects directories. and

The implementation of these classes as serializable objects has a number of implications. It
must be possible to use expressions like: instream >> myObject and outstream << myObject,
where specializations are entailed for the serial format of the iostreams (ASN.1, XML, etc.),
as well as for the internal structure of the object. The C++ Toolkit deploys several object stream
classes that specialize in various formats, and which know how to access and apply the type
information that is associated with the serializable object.

The type information for each class is defined in a separate static CTypelnfo object, which can
be accessed by all instances of that class. This is a very powerful device, which allows for the
implementation of many features generally found only in languages which have built-in class
reflection. Using the Toolkit's serializable objects will require some familiarity with the usage
of this type information, and several sections of this manual cover these topics (see Runtime

Object Type Information for a general discussion).

Locating and browsing serializable objects in the C++ Toolkit

The top level of the include/objects subtree is a set of subdirectories, where each subdirectory
includes the public header files for a separately compiled library. Similarly, the src/objects
subtree includes a set of subtrees containing the source files for these libraries. Finally, your
build/objects directory will contain a corresponding set of build subtrees where these libraries
are actually built.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 23

If you checked out the entire C++ SVN tree, you may be surprised to find that initially, the
include/objects subtrees are empty, and the subdirectories in the src/objects subtree contain
only ASN.1 modules. This is because both the header files and source files are auto-generated
from the ASN.1 specifications by the datatool program. As described in Working within the
C++ source tree, you can build everything by running make all r in the build directory.

Note: If you would like to have the objects libraries built locally, you must use the --with-
objects flag when running the configure script.

You can also access the pre-generated serializable objects in the public area, using the source
browsers to locate the objects you are particularly interested in. For example, if you are seeking
the new class definition for the Bioseq struct defined in the C Toolkit, you can search for the
CBioseq class, using either the LXR identifier search tool, or the Doxygen class hierarchy
browser. Starting with the name of the data object as it appears in the ASN.1 module, two
simple rules apply in deriving the new C++ class name:

* The one letter 'C' (for class) prefix should precede the ASN.1 name
* All hyphens ('-') should be replaced by underscores (' ")

For example, Seq-descr becomes CSeq_descr.

Base classes and user classes

The classes whose names are derived in this manner are called the user classes, and each also
has a corresponding base class implementation. The name of the base class is arrived at by
appending " Base" to the user class name. Most of the user classes are empty wrapper classes
that do not bring any new functionality or data members to the inherited base class; they are
simply provided as a platform for development. In contrast, the base classes are not intended
for public use (other than browsing), and should never be modified.

More generally, the base classes should never be instantiated or accessed directly in an
application. The relation between the two source files and the classes they define reflects a
general design used in developing the object libraries: the base class files are auto-generated
by datatool according to the ASN.1 specifications in the src/objects directories; the inherited
class files (the so-called user classes) are intended for developers who can extend these classes
to support features above and beyond the ASN.1 specifications.

Many applications will involve a "tangled hierarchy" of these objects, reflecting the complexity
of the real world data that they represent. For example, a CBioseq_set contains a list of
CSeq_entry objects, where each CSeq_entry is, in turn, a choice between a CBioseq and a
CBioseq_set.

Given the potential for this complexity of interactions, a critical design issue becomes how one
can ensure that methods which may have been defined only in the user class will be available
for all instances of that class. In particular, these instances may occur as contained elements
of another object which is compiled in a different library. These inter-object dependencies are
the motivation for the user classes. As shown in Figure 2, all references to external objects
which occur inside the base classes, access external user classes, so as to include any methods
which may be defined only in the user classes:

In most cases, adding non-virtual methods to a user class will not require re-compiling any
libraries except the one which defines the modified object. Note however, that adding non-
static data members and/or virtual methods to the user classes will change the class layouts,
and in these cases only, will entail recompiling any external library objects which access these
classes.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_app
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 24

Adding methods to the user classes

Note: This section describes the steps currently required to add new methods to the user classes.
It is subject to change, and there is no guarantee the material here is up-to-date. In general, it
is not recommended practice to add methods to the user classes, unless your purpose is to
extend these classes across all applications as part of a development effort.

The following topics are discussed in this section:

» Checking out source code, configuring the working environment, building the
libraries.

+ Adding methods

Checking out source code, configuring the working environment, building the libraries

« Create a working directory (e.g. Work) and check out the C++ tree to that directory:,
using either SVN checkout or the shell script, svn_core.

+ Configure the environment to work inside this tree using one of the configure scripts,
according to the platform you will be working on. Be sure to include the --with-objects
flag in invoking the configure script.

+ Build the xncbi, xser and xser libraries, and run datatool to create the objects header
and source files, and build all of the object module libraries:

Build the core library

cd path_to_compile dir/build/corelib

make

Build the util library

cd path to compile dir/build/util

make

might as well build datatool and avoid possible version skew cd
path to compile dir/build/serial make all r
needed for a few projects

cd path to compile dir/build/connect

make

cd path to compile dir/build/objects

make all r

Here path_to_compile_dir is set to the compile work directory which depends on the compiler
settings (e.g: ~/Work/internal/GCC-Debug). In addition to creating the header and source files,
using make all r (instead of just make) will build all the libraries. All libraries that are built
are also copied to the lib dir, e.g.:~/Work/internal/c++/GCC-Debug/lib. Similarly, all
executables (such as asn2asn) are copied to the bin dir, e.g.: ~/Work/internal/c++/GCC-Debug/
bin.

You are now ready to edit the user class files and add methods.

Adding methods

As an example, suppose that we would like to add a method to the CSeq_inst class to calculate
sequence length, e.g.:CSeq_inst::CalculateLength(). We begin by adding a declaration of this
method to the public section of the user class definition in Seq_inst.hpp:

Project Creation and Management

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_getcode_svn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_config

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 25

class CSeq inst : public CSeq inst Base
{
public:
CSeqg_inst (void);
~CSeq_inst (void);
static CSeqg_inst* New(void)
{
return new CSeqg_ inst (eCanDelete);
}
int CalculateLength () const;
protected:
CSeq_inst (ECanbDelete) ;
i

and in the source file, Seq_inst.cpp, we implement

int CSeq inst::CalculatelLength() const
{
// implementation goes here

}

These files are in the include/objects/seq and src/objects/seq subdirectories, respectively. Once
you have made the modifications to the files, you need to recompile the seq library, libseq.a,
Le.

cd path to compile dir/GCC-Debug/build/objects/seq

make

Here path_to_compile_dir is set to the compile work directory which depends on the compiler
settings (e.g: ~/Work/internal/GCC-Debug). The new method can now be invoked from within
a CBioseq object as: myBioseq.Getlnst().CalculateLength().

The key issue that determines whether or not you will need to rebuild any external libraries
that use the modified user class involves the class layout in memory. All of the external libraries
which reference the object refer to the class layout that existed prior to the changes you have
made. Thus, if your modifications do not affect the class layout, you do not have to rebuild
any external libraries. Changes that do affect memory mapping include:

* The addition of new, non-static data members
* The addition of virtual methods

If you have added either of the above to the user class, then you will need to identify all external
objects which use your object, and recompile the libraries in which these objects are defined.

Project Creation and Management

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 26

C++
Compilers configune include myBuild scripts =1 [
cgi myProj serial cogi myProj senal Mabedizin

Makeflis™ in

Malkafiie myProfl aon
Malefiie.n
MR cpn

_ bin build inc lib status
P o

cogi myProj senal MWabediz
Mafefie™
Makefie
Figure 2

Figure 1. Meta makefiles and the makefiles they generate

Chiosen_Base

T f5-A

CSeg_entry_Base ..SRSTe * Chiosey

T f5-A

Chiosen_set_Base .. ,*,-fffﬁ..., CSen_entry

T r5-A
UEES
— Chiosen_set

Figure 2. Example of complex relationships between base classes and user classes

Project Creation and Management

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 1. Build Directories

Directory Compiler Version
/netopt/ncbi_tools/c++/Debug/build Sun Workshop | Debug
/netopt/ncbi_tools/c++/Debug64/build Sun Workshop | Debug (64 bit)

/netopt/ncbi_tools/c++/DebugMT/build

Sun Workshop

Debug (Multi-thread safe)

/netopt/ncbi_tools/c++/Release/build

Sun Workshop

Release

/netopt/ncbi_tools/c++/ReleaseMT/build

Sun Workshop

Release (Multi-thread safe)

/netopt/ncbi_tools/c++/GCC-Debug/build

GCC

Debug

/netopt/ncbi_tools/c++/GCC-Release/build

GCC

Release

Project Creation and Management

Page 27

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

7: Programming Policies and Guidelines

Last Update: July 8, 2013.

Overview
The overview for this chapter consists of the following topics:
+ Introduction

« Chapter Outline

Introduction

This chapter discusses policies and guidelines for the development of NCBI software.

Chapter Outline

The following is an outline of the topics presented in this chapter:

* Choice of Language

* Source Code Conventions

— Public Domain Notice

— Naming Conventions

— Name Prefixing and/or the Use of Namespaces
— Use of the NCBI Name Scope

— Use of Include Directives

— Code Indentation and Bracing

— Class Declaration

— Function Declaration

— Function Definition

— Use of Whitespace

— Standard Header Template

* Doxygen Comments
¢ C++ Guidelines

— Introduction to Some C++ and STL Features and Techniques

4 C++ Implementation Guide
« Use of STL (Standard Template Library)
« Use of C++ Exceptions
* Design
* Make Your Code Readable
4 C++ Tips and Tricks
4 Standard Template Library (STL)
« STL Tips and Tricks

— C++/STL Pitfalls and Discouraged/Prohibited Features

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 2

4 STL and Standard C++ Library's Bad Guys
* Non-Standard STL Classes

4 C++ Bad Guys
* Operator Overload

+ Assignment and Copy Constructor Overload
¢ Omitting "void" in a No-Argument Function Prototype

* Do Not Mix malloc and new

* Source Code Repositories

+ Testing

Choice of Language

C++ is typically the language of choice for C++ Toolkit libraries and applications. The policy
for language choice in other areas within NCBI is:

+ C/C++--for high-performance standalone backend servers and CGls, computationally
intensive algorithms and large data flow processing tools used in production.

 sh or bash -- for primitive scripting.

« Python -- for advanced scripting. See its usage policy here.

» Perl -- for advanced scripting. The Python usage policy can be applied to Perl as well.
» Java -- for Eclipse programming and in-house QA and testing tools.

See the "Recommended programming and scripting languages" Wiki page for more
information and updates to this policy. Send proposals for corrections, additions and extensions
of the policy on language choice to the languages mailing list, languages@ncbi.nlm.nih.gov.

Source Code Conventions

This section contains C++ style guidelines, although many of these guidelines could also apply,
at least in principle, to other languages. Adherence to these guidelines will promote uniform
coding, better documentation, easy to read code, and therefore more maintainable code.

The following topics are discussed in this section:

+ Public Domain Notice

+ Naming Conventions
— Type Names
— Preprocessor Define/Macro
— Function Arguments and Local Variables
— Constants
— Class and Structure Data Members (Fields)
— Class Member Functions (Methods)
— Module Static Functions and Data
— Global ("extern") Functions and Data

* Name Prefixing and/or the Use of Namespaces

+ Use of the NCBI Name Scope

Programming Policies and Guidelines

http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Recommended_Python_Database_Interface_modules#Recommended_Python_Database_Interface_modules1
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Recommended_Python_Database_Interface_modules#Recommended_Python_Database_Interface_modules1
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Recommended_programming_and_scripting_languages

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 3

« Use of Include Directives

* Code Indentation and Bracing

* (lass Declaration

* Function Declaration

* Function Definition

» Use of Whitespace

« Standard Header Template

Public Domain Notice

All NCBI-authored C/C++ source files must begin with a comment containing NCBI's public
domain notice, shown below. Ideally (subject to the developer’s discretion), so should any
other publicly released source code and data (including scripting languages and data
specifications).

/* $I1d$

*

* PUBLIC DOMAIN NOTICE

* National Center for Biotechnology Information

* This software/database is a "United States Government Work" under the

* terms of the United States Copyright Act. It was written as part of

* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.

* Government have not placed any restriction on its use or reproduction.

* Although all reasonable efforts have been taken to ensure the accuracy

* and reliability of the software and data, the NLM and the U.S.

* Government do not and cannot warrant the performance or results that

* may be obtained by using this software or data. The NLM and the U.S.

* Government disclaim all warranties, express or implied, including

* warranties of performance, merchantability or fitness for any particular

* purpose.

* Please cite the author in any work or product based on this material.

*/

If you have questions, please email to cpp-core@ncbi.nlm.nih.gov.

Naming Conventions

Table 1. Naming Conventions

SYNOPSIS

EXAMPLE

Type Names

Programming Policies and Guidelines

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

CClassTypeName class CMyClass { I8

IinterfaceName class IMylInterface { I
SStructTypeName struct SMyStruct { };

UUnionTypeName union UMyUnion { I8

EEnumTypeName enum EMyEnum { I
FFunctionTypeName typedef int (*FMyFunc)(void);
PPredicateName struct PMyPred { bool operator() (....,); };
TAuxiliary Typedef) typedef map<int,string> TMyMaplIntStr;

Tlterator_I

typedef list<int>::iterator TMyList_I;

TConstlterator_CI

typedef set<string>::const_iterator TMySet_CI,

NNamespace (see also) namespace NMyNamespace { }
Preprocessor Define/Macro
MACRO_NAME #define MY_DEFINE 12345

macro_arg_name

#define MY _MACRO(x, y) ((x) + 1) < (y))

Function Arguments and Local Variables

func_local_var_name

void MyFunc(int foo, const CMyClass& a_class)
{

size_t foo_size;

int bar;

Constants

kConstantName

const int kMyConst = 123;

eEnumValueName

enum EMyEnum {
eMyEnum_1=11,
eMyEnum_2 =22,
eMyEnum 3 =33

5

fFlagValueName

enum EMyFlags {
fMyFlag 1 = (1<<0), /<= 0x1 (describe)
fMyFlag_2 = (1<<1), ///< = 0x2 (describe)
fMyFlag_3 = (1<<2) ///< = 0x4 (describe)
b
typedef int TMyFlags; /< holds bitwise OR of "EMyFlags"

Class and Structure Data Members (Fields)

m_ClassMemberName

class C { short int m_MyClassData; };

struct_field name

struct S { int my_struct field; };

sm_ClassStaticMemberName

class C { static double sm_MyClassStaticData; };

CI

ass Member Functions (Methods)

ClassMethod

bool MyClassMethod(void);

x_ClassPrivateMethod

int x_MyClassPrivateMethod(char c);

Module Static Functions and Data

s_StaticFunc

static char s_MyStaticFunc(void);

Programming Policies and Guidelines

Page 4

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

s_StaticVar

static int s_MyStaticVar;

Global ("extern') Functions and Data

g GlobalFunc

double g_MyGlobalFunc(void);

g GlobalVar

short g MyGlobalVar;

(*) The auxiliary typedefs (like TAuxiliaryTypedef) are usually used for an ad-hoc type mappings (especially when using templates) and not when a

real type definition takes place.

Name Prefixing and/or the Use of Namespaces

In addition to the above naming conventions that highlight the nature and/or the scope of things,
one should also use prefixes to:

* avoid name conflicts
+ indicate the package that the entity belongs to

For example, if you are creating a new class called "Bar" in package "Foo" then it is good
practice to name it "CFooBar" rather than just "CBar". Similarly, you should name new
constants like "kFooSomeconst", new types like "TFooSometype", etc.

Use of the NCBI Name Scope

<ncbistl.hpp>

All NCBI-made “core” API code must be put into the "ncbi::" namespace. For this purpose,
there are two preprocessor macros, BEGIN NCBI SCOPE and END NCBI SCOPE, that
must enclose all NCBI C++ API code -- both declarations and definitions (see examples).
Inside these "brackets", all "std::" and "ncbi::" scope prefixes can (and must!) be omitted.

For code that does not define a new API but merely uses the NCBI C++ API, there is a macro
USING_NCBI_SCOPE; (semicolon-terminated) that brings all types and prototypes from the
"std::" and "ncbi::" namespaces into the current scope, eliminating the need for the "std::" and
"ncbi::" prefixes.

Use macro NCBI_USING NAMESPACE_STD; (semicolon-terminated) if you want to bring
all types and prototypes from the "std::" namespace into the current scope, without bringing
in anything from the "ncbi::" namespace.

Use of Include Directives

If a header file is in the local directory or not on the INCLUDE path, use quotes in the include
directive (e.g. #include "foo.hpp"). In all other cases use angle brackets (e.g. #include <bar/
foo.hpp>).

In general, if a header file is commonly used, it must be on the INCLUDE path and therefore
requires the bracketed form.

Code Indentation and Bracing

4-space indentation only! Tabulation symbol must not be used for indentation.
Try not to cross the "standard page boundary" of 80 symbols.

In if, for, while, do, switch, case, etc. and type definition statements:

Programming Policies and Guidelines

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

} else if (...) |

} // switch

struct|union|enum <[S|U|E]TypeName> {

class | struct | union <[C|I|P|S|U]TypeName>

catch (exceptions& e)

Programming Policies and Guidelines

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 7

Class Declaration

Class declarations should be rich in Doxygen-style comments. This will increase the value of
the Doxygen-based API documentation.

/// @file FileName
/// Description of file -- note that this is required if you want

/// to document global objects such as typedefs, enums, etc.

YV
/17

/// CFooClass

/17

/// Brief description of class (or class template, struct, union) --
/// it must be followed by an empty comment line.

/17

/// A detailed description of the class -- it follows after an empty
/// line from the above brief description. Note that comments can

/// span several lines and that the three /// are required.

class CFooClass
{
public:

// Constructors and Destructor:

/// A brief description of the constructor.
/17
/// A detailed description of the constructor.

CFooClass (const char* init str = NULL); ///< describe parameter here

/// A brief description for another constructor.

CFooClass (int init int); ///< describe parameter here

~CFooClass (void); // Usually needs no Doxygen-style comment.

// Members and Methods:

/// A brief description of TestMe.

177/

/// A detailed description of TestMe. Use the following when
/// parameter descriptions are going to be long, and you are
/// describing a complex method:

/// @param foo

/// An int value meaning something.

/// @param bar

/// B constant character pointer meaning something.

/// Q@return

/// The TestMe () results.

/// @sa CFooClass (), ~CFooClass() and TestMeToo() - see also.

Programming Policies and Guidelines

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 8

float TestMe (int foo, const char* bar);

/// A brief description of TestMeToo.

177/

/// Details for TestMeToo. Use this style if the parameter
/// descriptions are going to be on one line each:

/// @sa TestMe ()

virtual void TestMeToo

(char parl, ///< short description for parl

unsigned int par2 ///< short description for par2

) = 0;

/// Brief description of a function pointer type

/// (note that global objects like this will not be documented
/// unless the file itself is documented with the @file command) .
/17

/// Detailed description of the function pointer type.

typedef char* (*FHandler)

(int start, ///< argument description 1 -- what start means

int stop ///< argument description 2 -- what stop means

)i

// (NOTE: The use of public data members is

// strictly discouraged!

// 1f used they should be well documented!)

/// Describe public member here, explain why it’s public.

int m PublicData;

protected:
/// Brief description of a data member -- notice no details are
/// given here since a brief description is adequate.

double m_FooBar;

/// Brief function description here.
/// Detailed description here. More description.
/// Q@return Return value description here.

static int ProtectedFunc (char ch); ///< describe parameter here

private:
/// Brief member description here.
/// Detailed description here. More description.

int m_PrivateData;

/// Brief static member description here.

static int sm PrivateStaticData;

/// Brief function description here.
/// Detailed description here. More description.
/// @return Return value description here.

double x PrivateFunc(int some int = 1); ///< describe parameter here

Programming Policies and Guidelines

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 9

// Friends
friend bool SomeFriendFunc (void) ;

friend class CSomeFriendClass;

// Prohibit default initialization and assignment

// -- e.g. when the member-by-member copying is dangerous.

/// This method is declared as private but is not
/// implemented to prevent member-wise copying.

CFooClass (const CFooClassé&) ;

/// This method is declared as private but is not
/// implemented to prevent member-wise copying.
CFooClass& operator= (const CFooClassé&);

bi

Function Declaration

Doxygen-style comments for functions should describe what the function does, its parameters,
and what it returns.

For global function declarations, put all Doxygen-style comments in the header file. Prefix
global functions with g_.

/// A brief description of MyFunc2.

/17

/// Explain here what MyFunc2 () does.

/// Qreturn explain here what MyFunc2() returns.

bool g MyFunc2

(double argl, ///< short description of "argl"
string* arg2, ///< short description of "arg2"
long arg3 = 12 ///< short description of "arg3"
)i

Function Definition

Doxygen-style comments are not needed for member function definitions or global function
definitions because their comments are put with their declarations in the header file.

For static functions, put all Doxygen-style comments immediately before the function
definition. Prefix static functions with s_.

bool g MyFunc2
(double argl,
string* arg2,

long arg3

return true;

}

Programming Policies and Guidelines

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 10

/// A brief description of s MyFunc3.

/17

/// Explain here what s MyFunc3() does.

/// @return explain here what s MyFunc3() returns.

static long s MyFunc3(void)

Use of Whitespace

As the above examples do not make all of our policies on whitespace clear, here are some
explicit guidelines:

* Whenreasonably possible, use spaces to align corresponding elements vertically. (This
overrides most of the rules below.)

« Leave one space on either side of most binary operators, and two spaces on either side
of boolean && and ||.

+ Put one space between the names of flow-control keywords and macros and their
arguments, but no space after the names of functions except when necessary for
alignment.

« Leave two spaces after the semicolons in for (...; ...; ...).
» Leave whitespace around negated conditions so that the ! stands out better.

* Leave two blank lines between function definitions.

Standard Header Template

A standard header template file, header template.hpp, has been provided in the include/
common directory that can be used as a template for creating header files. This header file
adheres to the standards outlined in the previous sections and uses a documentation style for
files, classes, methods, macros etc. that allows for automatic generation of documentation from
the source code. It is strongly suggested that you obtain a copy of this file and model your
documentation using the examples in that file.

Doxygen Comments

Doxygen is an automated API documentation tool. It relies on special comments placed at

appropriate places in the source code. Because the comments are in the source code near what
they document, the documentation is more likely to be kept up-to-date when the code changes.
A configuration and parsing system scans the code and creates the desired output (e.g. HTML).

Doxygen documentation is a valuable tool for software developers, as it automatically creates
comprehensive cross-referencing of modules, namespaces, classes, and files. It creates
inheritance diagrams, collaboration diagrams, header dependency graphs, and documents each
class, struct, union, interface, define, typedef, enum, function, and variable (see the NCBI C+
+ Toolkit Doxygen browser). However, developers must write meaningful comments to get
the most out of it.

Doxygen-style comments are essentially extensions of C/C++ comments, e.g. the use of a
triple-slash instead of a double-slash. Doxygen-style comments refer to the entity following
them by default, but can be made to refer to the entity preceding them by appending the ‘<’
symbol to the comment token (e.g. ‘//<’).

Programming Policies and Guidelines

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/include/common/header_template.hpp
http://www.stack.nl/~dimitri/doxygen/
http://intranet.ncbi.nlm.nih.gov:6224/ieb/ToolBox/CPP_DOC/doxyhtml

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 11

Doxygen commands are keywords within Doxygen comments that are used during the
document generation process. Common commands are @param, @return, and @sa (i.e. ‘see
also’).

Please do not use superfluous comments, such as ‘/// Destructor’. Especially do not use the
same superfluous comment multiple times, such as using the same ‘/// Constructor’ comment
for different constructors!

Please see the Doxygen manual for complete usage information. More information can also
be found in the chapter on Toolkit browsers.

C++ Guidelines

This section discusses the following topics:

* Introduction to Some C++ and STL Features and Techniques

— C++ Implementation Guide

4 Use of STL (Standard Template Library)
¢ Use of C++ Exceptions
¢ Design
4 Make Your Code Readable
— C++ Tips and Tricks
— Standard Template Library (STL)
4 STL Tips and Tricks
« C++/STL Pitfalls and Discouraged/Prohibited Features
— STL and Standard C++ Library's Bad Guys
4 Non-Standard STL Classes

— C++ Bad Guys
4 Operator Overload

4 Assignment and Copy Constructor Overload
4 Omitting "void" in a No-Argument Function Prototype

4 Do Not Mix malloc and new

Introduction to Some C++ and STL Features and Techniques
C++ Implementation Guide

Use of STL (Standard Template Library)

Use the Standard Template Library (STL), which is part of ANSI/ISO C++. It'll make
programming easier, as well as make it easier for others to understand and maintain your code.

Use of C++ Exceptions

« Exceptions are useful. However, since exceptions unwind the stack, you must be
careful to destroy all resources (such as memory on the heap and file handles) in every
intermediate step in the stack unwinding. That means you must always catch
exceptions, even those you don't handle, and delete everything you are using locally.
In most cases it's very convenient and safe to use the auto_ptr template to ensure the
freeing of temporary allocated dynamic memory for the case of exception.

+ Avoid using exception specifications in function declarations, such as:

Programming Policies and Guidelines

http://www.stack.nl/~dimitri/doxygen/manual.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_browse
http://www.parashift.com/c++-faq-lite/exceptions.html#faq-17.4

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 12

void foo(void) throw ();

void bar (void) throw (std::exception);

Design

Use abstract base classes. This increases the reusability of code. Whether a base class
should be abstract or not depends on the potential for reuse.

Don't expose class member variables, rather expose member functions that manipulate
the member variables. This increases reusability and flexibility. For example, this frees
you from having the string in-process -- it could be in another process or even on
another machine.

Don't use multiple inheritance (i.e. class A: public B, public C {}) unless creating
interface instead of implementation. Otherwise, you'll run into all sorts of problems
with conflicting members, especially if someone else owns a base class. The best time
to use multiple inheritance is when a subclass multiply inherits from abstract base
classes with only pure virtual functions.

NOTE: Some people prefer the Unified Modelling Language to describe the relationships
between objects.

Make Your Code Readable

Use NULL instead of 0 when passing a null pointer. For example:

MyFunc (0,0); // Just looking at this call, you can’t tell which

// parameter might be an int and which might be

// a pointer.

MyFunc (0,NULL) ; // When looking at this call, it’s pretty clear

// that the first parameter is an int and

// the second is a pointer.

Avoid using bool as a type for function arguments. For example, this might be hard to
understand:

// Just looking at this call, you can’t tell what

// the third parameter means:

CompareStrings (sl, s2, true);

Instead, create a meaningful enumerated type that captures the meaning of the parameter. For
example, try something like this:

L1777 007 77777777777 77

/17

/// ECaseSensitivity --

/17

/// Control case-sensitivity of string comparisons.

/77

enum ECaseSensitivity {

eCaseSensitive, ///< Consider case when comparing.

eIgnoreCase ///< Don’t consider case when comparing.

}i

Programming Policies and Guidelines

http://www.rational.com/uml/index.jtmpl

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 13

/// Brief description of function here.

/// @return

/// describe return value here.

int CompareStrings

(const stringé& sl, ///< First string.

const string& s2, ///< Second string.

ECaseSensitivity comp case); ///< Controls case-sensitivity

///< of comparisons.

// This call is more understandable because the third parameter
// is an enum constant rather than a bool constant.

CompareStrings (sl, s2, elIgnoreCase);

As an added benefit, using an enumerated type for parameters instead of bool gives you the
ability to expand the enumerated type to include more variants in the future if necessary -
without changing the parameter type.

C++ Tips and Tricks

* Writing something like map<int, int, less<int>> will give you weird errors; instead
write map<int, int, less<int>>. This is because >> is reserved word.

* Do use pass-by-reference. It'll cut down on the number of pointer related errors.
« Use const (or enum) instead of #define when you can. This is much easier to debug.

» Header files should contain what they contain in C along with classes, const's, and in-
line functions.

See the C++ FAQ

Standard Template Library (STL)

The STL is a library included in ANSI/ISO C++ for stream, string, and container (linked lists,
etc.) manipulation.

STL Tips and Tricks

end() does not return an iterator to the last element of a container, rather it returns a iterator
just beyond the last element of the container. This is so you can do constructs like

for (iter = container.begin(); iter != container.end(); iter++)
If you want to access the last element, use "--container.end()". Note: If you use this construct

to find the last element, you must first ensure that the container is not empty, otherwise you
could get corrupt data or a crash.

The C++ Toolkit includes macros that simplify iterating. For example, the above code
simplifies to:

ITERATE (Type, iter, container)

Programming Policies and Guidelines

http://www.parashift.com/c++-faq-lite

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 14

For more info on ITERATE (and related macros), see the ITERATE macros section.

Iterator misuse causes the same problems as pointer misuse. There are versions of the STL that
flag incorrect use of iterators.

Iterators are guaranteed to remain valid after insertion and deletion from list containers, but
not vector containers. Check to see if the container you are using preserves iterators.

If you create a container of pointers to objects, the objects are not destroyed when the container
is destroyed, only the pointers are. Other than maintaining the objects yourself, there are several
strategies for handling this situation detailed in the literature.

If you pass a container to a function, don't add a local object to the container. The local variable
will be destroyed when you leave the function.

C++/STL Pitfalls and Discouraged/Prohibited Features

« STL and Standard C++ Library's Bad Guys

— Non-Standard Classes

+ C++Bad Guys
— Operator Overload

— Assignment and Copy Constructor Overload
— Omitting "void" in a No-Argument Function Prototype

— Do Not Mix malloc and new

STL and Standard C++ Library's Bad Guys

Non-Standard STL Classes

« Don'tuse the rope class from some versions of the STL. This is a non-standard addition.
If you have questions about what is/isn't in the standard library, consult the C++
standards.

+ The NCBI C++ Toolkit includes hash_map, hash_multimap, hash_set, and
hash_multiset classes (from headers <corelib/hash map.hpp> and <corelib/
hash_set.hpp>). These classes are more portable than, and should be used instead of,
the STL's respective hash * classes.

C++ Bad Guys

Operator Overload

Do not use operator overloading for the objects where they have unnatural or ambiguous
meaning. For example, the defining of operator==() for your class "CFoo" so that there exist
{ CFoo a,b,c; } such that (a==Db) and (b == c) are true while (a == c) is false would be a very
bad idea. It turns out that otherwise, especially in large projects, people have different ideas of
what an overloaded operator means, leading to all sorts of bugs.

Assignment and Copy Constructor Overload

Be advised that the default initialization {CFoo foo = bar;} and assignment {CFoo foo; ...; foo
=bar;} do amember-by-member copying. This is not suitable and can be dangerous sometimes.
And if you decide to overwrite this default behavior by your own code like:

class CFoo {

// a copy constructor for initialization

Programming Policies and Guidelines

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=app1.appendix1
http://www.parashift.com/c++-faq-lite/big-picture.html#faq-6.12
http://www.parashift.com/c++-faq-lite/big-picture.html#faq-6.12
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hash__map_8hpp.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hash__set_8hpp.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hash__set_8hpp.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 15

CFoo (const CFooé& bar) { ... }

// an overloaded assignment (=) operator

CFoo& operator=(const CFoo& bar) { if (&bar != this) ... }
}i

it is extremely important that:
« both copy constructor and overloaded assignment be defined

+ they have just the same meaning; that is {CFoo foo = bar;} is equivalent to {CFoo
foo; foo = bar;}

« there is a check to prevent self-assignment in your overloaded assignment operator

In many cases when you don't want to have the assignment and copy constructor at all, just
add to your class something like:

class CFoo {

private:
// Prohibit default initialization and assignment
CFooClass (const CFooClassé&);

CFooClass& operator=(const CFooClassé&);

bi

Omitting "void" in a No-Argument Function Prototype

Do not omit "void" in the prototype of a function without arguments (e.g. always write "int f
(void)" rather than just "int f()").

Do Not Mix malloc and new

On some platforms, malloc and new may use completely different memory managers, so never
"free()" what you created using "new" and never "delete" what you created using "malloc()".
Also, when calling C code from C++ always allocate any structs or other items using "malloc
()". The C routine may use "realloc()" or "free()" on the items, which can cause memory
corruption if you allocated using "new."

Source Code Repositories

The following Subversion repositories have been set up for general use within NCBI:

Repository Purpose
toolkit C++ Toolkit (core and internal) development
gbench GUI/ GBENCH

staff

individuals' projects (not parts of any official projects)

misc_projects

projects not falling into any of the other categories

Note for NCBI developers: Using these repositories has the additional advantages that they
are:

+ backed up;

+ partially included in automated builds and tests (along with reporting via email and on
the intranet) on multiple platforms and compiler configurations; and

Programming Policies and Guidelines

https://svn.ncbi.nlm.nih.gov/viewvc/toolkit/
https://svn.ncbi.nlm.nih.gov/viewvc/gbench/
https://svn.ncbi.nlm.nih.gov/viewvc/staff/
https://svn.ncbi.nlm.nih.gov/viewvc/misc_projects/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://intranet/ieb/ToolBox/STAT/test_stat/test_stat_ext.cgi

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Testing

Page 16

+ integrated with JIRA and FishEye.

Unit testing using the Boost Unit Test Framework is strongly encouraged for libraries. Within
NCBI, unit tests can be incorporated into the nightly automated testsuite by using the
CHECK_CMD macro in the makefile. All testsuite results are available on the testsuite web
page. Users can also be automatically emailed with build and/or test results by using the
WATCHERS macro. Please see the chapter on Using the Boost Unit Test Framework for more
information.

Applications should also be tested, and shell scripts are often convenient for this purpose.

Data files used for testing purposes should be checked into SVN with the source code unless
they are very large.

Programming Policies and Guidelines

http://jira/secure/Dashboard.jspa
http://fisheye:8008/
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost
http://intranet/ieb/ToolBox/STAT/test_stat/test_stat_ext.cgi
http://intranet/ieb/ToolBox/STAT/test_stat/test_stat_ext.cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

Part 3: C++ Toolkit Library Reference

Part 3 discusses the the core library and the different specialized libraries such as the
connection, database API, CGI, HTML, Serial, Util, GUI etc. The following is a list of chapters
in this part:

8 Portability, Core Functionality and Application Framework
9 Networking and IPC

10 Database Access - SQL, Berkley DB
11 CGI and Fast-CGI

12 HTML

13 Data Serialization (ASN.1, XML)

14 Biological Sequence Data Model

15 Biological Object Manager

16 BLAST API

17 Access to NCBI data

18 Biological Sequence Alignment

19 GUI and Graphics

20 Using the Boost Unit Test Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_core
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_conn
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dbapi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_cgi
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_datamod
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_objmgr
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_blast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_dataaccess
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_algoalign
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_gui
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_boost

300g HX[001 ++O 190N 8yl 300g HY[001 ++0 190N 8yl

300g HX[001 ++O 190N 8yl

The NCBI C++ Toolkit

8: Portability, Core Functionality and Application Framework

Last Update: July 9, 2013.

Overview
The overview for this chapter consists of the following topics:
+ Introduction

« Chapter Outline

Introduction
* CORELIB library xncbi:include | src

The CORELIB provides a portable low-level API and many useful application framework classes
for argument processing, diagnostics, environment interface, object and reference classes,
portability definitions, portable exceptions, stream wrappers, string manipulation, threads, etc.

This chapter provides reference material for many of CORELIB's facilities. For an overview of
CORELIB, please refer to the CORELIB section in the introductory chapter on the C++ Toolkit.

Note: The CORELIB must be linked to every executable that uses the NCBI C++ Toolkit!
« UTIL library xutil:include | src

The UTIL module is a collection of useful classes which can be used in more then one application.
This chapter provides reference material for many of UTIL's facilities. For an overview of the
UTIL module please refer to the UTIL section in the introductory chapter on the C++ Toolkit.

Chapter Outline

The following is an outline of the topics presented in this chapter:
* Writing a Simple Application

— NCBI C++ Toolkit Application Framework Classes
4 CNcbiApplication
4 CNcbiArguments
4 CNcbiEnvironment
4 CNcbiRegistry
¢ CNcbiDiag

— Creating a Simple Application

4 Unix-like Systems
4 MS Windows
4 Discussion of the Sample Application
— Inside the NCBI Application Class
+ Processing Command-Line Arguments
— Capabilities of the Command-Line API

— The Relationships between the CArgDescriptions, CArgs, and CArgValue
Classes

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

— Command-Line Syntax
— The CArgDescriptions (*) Class

¢ The CArgDescriptions Constructor

Describing Argument Attributes

Argument Types
Restricting the Input Argument Values

Implementing User-defined Restrictions Using the CArgAllow Class

®* & &6 o o

Using CArgDescriptions in Applications
4 Generating a USAGE Message
— The CArgs (*) Class: A Container Class for CArgValue (*) Objects
— CArgValue (*) Class: The Internal Representation of Argument Values

— Supporting Command-Based Command Lines

— Code Examples
Namespace, Name Concatenation, and Compiler-specific Macros

— NCBI Namespace

— Other Namespace Macros

— Name Concatenation

— Compiler-specific Macros

Configuration Parameters

— General Usage Information

— Macros for Creating Parameters

— Methods for Using Parameters

— Supporting Classes
Using the CNcbiRegistry Class
— Working with the Registry Class: CNcbiRegistry

— Syntax of the Registry Configuration File

— Search Order for Initialization (*.ini) Files

— Fine-Tuning Registry Parameters Using [Registry::EFlags
— Main Methods of CNcbiRegistry

— Additional Registry Methods

Portable Stream Wrappers

Working with Diagnostic Streams (*)

— Where Diagnostic Messages Go

— Setting Diagnostic Severity Levels

— Diagnostic Messages Filtering
— Log File Format
4 The Old Post Format
4 The New Post Format

4 Controlling Appearance of Diagnostic Message Using Post Flags

Portability, Core Functionality and Application Framework

Page 2

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

— Defining the Output Stream
— Tee Output to STDERR

— The Message Buffer

— Request Exit Status Codes
4 Standard (HTTP-like) status codes
4 NCBI-specific status codes

— Error Codes and Their Descriptions

4 Preparing an Error Message File
— Defining Custom Handlers Using CDiagHandler
— The ERR_POST and LOG_POST Macros
— The TRACE macro

— Stack Traces

4 Printing a Stack Trace
4 Obtaining a Stack Trace for Exceptions
Debug Macros
Handling Exceptions
Defining the Standard NCBI C++ Types and Their Limits
— Headers Files Containing Portability Definitions
— Built-in Integral Types
— Auxiliary Types
— Fixed-Size Integer Types
— The "Ncbi_BigScalar" Type
— Encouraged and Discouraged Types
Understanding Smart Pointers: the CObject and CRef Classes
— STL auto_ptrs
— The CRef (*) Class
— The CObject (*) Class
— The CObjectFor (*) Class: Using Smart Pointers for Standard Types
— When to Use CRefs and auto_ptrs
— CRef Pitfalls
4 Inadvertent Object Destruction

Atomic Counters

Portable Mechanisms for Loading DLLs
— CDII Constructor
— CDII Basename
— Other CDII Methods

Executing Commands and Spawing Processes Using the CExec Class
— Executing a System Command Using the System() Method
— Defining Spawned Process Modes (EMode Type)

Portability, Core Functionality and Application Framework

Page 3

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

— Spawning a Process Using SpawnX() Methods

— Waiting for a Process to Terminate Using the Wait() Method
Implementing Parallelism Using Threads and Synchronization Mechanisms

— Using Threads
— CThread (*) Class Public Methods

— CThread (*) Class Protected Methods
— Thread Life Cycle
— Referencing Thread Objects
— Thread Local Storage (CTIs<> class [*])
— Mutexes
¢ CMutex

CFastMutex
SSystemMutex and SSystemFastMutex
CMutexGuard and CFastMutexGuard
Lock Classes

+ CRWLock

+ CAutoRW

* CReadLockGuard

* CWriteLockGuard

+ ClnternalRWLock

+ CSemaphore
Working with File and Directories Using CFile and CDir

— CDirEntry Class
— CFile Class

— CDir Class

— CMemoryFile Class
String APIs

— String Constants

— NStr Class

— UTEF-8 Strings

— PCase and PNocase
Portable Time Class

® & o o

— CTime Class Constructors
— Other CTime Methods
Template Utilities

— Function Objects
— Template Functions

Miscellaneous Types and Macros

— Miscellaneous Enumeration Types

Portability, Core Functionality and Application Framework

Page 4

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 5

— AutoPtr Class
— ITERATE Macros

— Sequence Position Types

+ Containers
— template<typename Coordinate> class CRange
¢ Typedefs
4 Methods

— template<typename Object, typename Coordinate = int> class CRangeMap

— template<typename Object, typename Coordinate = int> class CRangeMultiMap

— class ClntervalTree
« Thread Pools
— class CThreadPool
— class CThreadPool_Task
— class CThreadPool Thread
— class CThreadPool_Controller
— class CThreadPool Controller PID

* Miscellaneous Classes

— class CTempString

— class CChecksum

+ Input/Output Utility Classes
— class CIStreamBuffer
— class COStreamBuffer

— class CByteSource

— class CStreamByteSource

— class CFStreamByteSource

— class CFileByteSource

— class CMemoryByteSource

— class CByteSourceReader

— class CSubSourceCollector

» Using the C++ Toolkit from a Third Party Application Framework

Demo Cases [src/sample/app/basic]

Writing a Simple Application

This section discusses how to write a simple application using the CNcbiApplication and
related class. A conceptual understanding of the uses of the CNcbiApplication and related
classes is presented in the introductory chapter on the C++ Toolkit.

This section discusses the following topics:
+ Basic Classes of the NCBI C++ Toolkit
« Creating a Simple Application

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 6

« Inside the NCBI Application Class
Note: The C++ Toolkit can also be used from a third party application framework.

NCBI C++ Toolkit Application Framework Classes

The following five fundamental classes form the foundation of the C++ Toolkit Application
Framework:

* CNcbiApplication

+ CNcbiArguments (see also CArgDescriptions, CArgs, ...)

+ CNcbiEnvironment
* CNcbiRegistry
» CNcbiDiag
Each of these classes is discussed in the following sections:

CNcbiApplication

CNcbiApplication is an abstract class used to define the basic functionality and behavior of an
NCBI application. Because this application class effectively supersedes the C-style main()
function, minimally, it must provide the same functionality, i.e.:

« amechanism to execute the actual application
+ adata structure for holding program command-line arguments ("argv")
+ adata structure for holding environment variables

In addition, the application class provides the same features previously implemented in the C
Toolkit, namely:

* mechanisms for specifying where, when, and how errors should be reported

+ methods for reading, accessing, modifying, and writing information in the application's
registry (configuration) file

+ methods to describe, and then automatically parse, validate, and access program
command-line arguments and to generate the USAGE message

The mechanism to execute the application is provided by CNcbiApplication's member function
Run(), for which you must write your own implementation. The Run() function will be
automatically invoked by CNcbiApplication:: AppMain(), after it has initialized its
CNcbiArguments, CNcbiEnvironment, CNcbiRegistry, and CNcbiDiag data members.

CNcbiArguments

The CNcbiArguments class provides a data structure for holding the application's command-
line arguments, along with methods for accessing and modifying these. Access to the argument
values is implemented using the built-in [] operator. For example, the first argument in argv
(following the program name) can be retrieved using the CNcbiApplication::GetArguments()
method:

string argl value = GetArguments() [1];

Here, GetArguments() returns the CNcbiArguments object, whose argument values can then
be retrieved using the [] operator. Four additional CNcbiArguments member functions support
retrieval and modification of the program name (initially argv[0]). A helper class, described
in Processing Command-Line Arguments, supports the generation of USAGE messages and
the imposition of constraints on the values of the input arguments.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiArguments.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 7

In addition to the CNcbiArguments class, there are other related classes used for argument
processing. The CArgDescriptions and CArgDesc classes are used for describing unparsed
arguments; CArgs and CArgValue for parsed argument values; CArgException and
CArgHelpException for argument exceptions; and CArgAllow, CArgAllow {Strings, ...,
Integers, Doubles} for argument constraints. These classes are discussed in the section on

Processing Command-Line Arguments.

When using the C++ Toolkit on the Mac OS, you can specify command-line arguments in a
separate file with the name of your executable and ".args" extension. Each argument should
be on a separate line (see Table 1).

CNcbiEnvironment

The CNcbiEnvironment class provides a data structure for storing, accessing, and modifying
the environment variables accessed by the C library routine getenv().

The following describes the public interface to the CNcbiEnvironment:

class CNcbiEnvironment
{
public:
/// Constructor.
CNcbiEnvironment (void) ;
/// Constructor with the envp parameter.
CNcbiEnvironment (const char* const* envp);
/// Destructor.
virtual ~CNcbiEnvironment (void) ;

/// Reset environment.

/17
/// Delete all cached entries, load new ones from "envp" (if not NULL).
void Reset (const char* const* envp = 0);

/// Get environment value by name.

/77

/// If environmnent value is not cached then call "Load(name)" to load
/// the environmnent value. The loaded name/value pair will then be
/// cached, too, after the call to "Get()".

const string& Get (const string& name) const;

bi

For example, to retrieve the value of environment variable PATH:
string argl value = GetEnvironment () .Get ("PATH");
In this example, the GetEnvironment() is defined in the CNcbiApplication class and returns

the CNcbiEnvironment object for which the Get() method is called with the environment
variable PATH.

To delete all of the cached entries and reload new ones from the environment pointer (envp),
use the CNcbiEnvironment::Reset() method.

CNcbiRegistry

Complete details for the CNcbiRegistry can be found in the section on The CNcbiRegistry
Class.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiEnvironment.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 8

CNcbiDiag

The CNcbiDiag class implements much of the functionality of the NCBI C++ Toolkit error-
processing mechanisms; however, it is not intended to be used directly. Instead, use the { ERR)
LOG _POST* and _TRACE macros. See the sections on Diagnostic Streams and Message
Posting for related information.

Creating a Simple Application
This section discusses the following topics:
+ Unix-like Systems
+ MS Windows

» Discussion of the Sample Application

Unix-like Systems

Using the new_project shell script, create a new project example:
new project example app

This will create:
1 the project folder -- example
2 the source file -- example.cpp

3 the makefiles -- Makefile, Makefile.builddir, Makefile.in, Makefile.example.app,
Makefile.example app, Makefile.out

Then build the project and run the application:

cd example; make; ./example

MS Windows

Using the new_project shell script, create a new project example:
new project example app

This will create:
1 the project folder -- example

2 the source file -- example\src\example\basic_sample.cpp (the source file name is
always basic_sample.cpp, regardless of the project name)

3 the MSVC project file -- example\compilers\msvc1000 prj\static\build\example
\example.exe.vcproj

the MSVC solution file -- example\compilers\msvc 1000 _prj\static\build\example.sin
a project makefile -- example\src\example\Makefile.example.app
other folders and files needed for building under Windows

Note: If you prefer to have your source file name match your project name, you can achieve
that by making the following edits before opening Visual Studio (for basic application projects,
that is - other project types might require more edits):

1 Rename the source file from example\src\example\basic_sample.cpp to example.cpp.

2 Edit the MSVC project file example\compilers\msvc1000 prj\static\build\example
\example.exe.veproj and replace "basic_sample" with "example".

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_proj

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 9

3 Edit the project makefile example\src\example\Makefile.example.app and replace
"basic_sample" with "example".

Then open the solution file example\compilers\msvc1000_prj\static\build\example.sln with
MSVS and:

1 Build the -CONFIGURE- project (reloading the project when prompted).
2 Build the project and run the application.

Discussion of the Sample Application

In the sample application above:

1. There is an application class derived from CNcbiApplication, which overrides the purely
virtual function Run() as well as the initialization (Init()) and cleanup (Exit()) functions:

class CSampleBasicApplication : public CNcbiApplication
{

private:

virtual void Init (void);

virtual int Run (void);

virtual void Exit (void);

}i

2. The program's main function creates an object of the application class and calls its AppMain
() function:

int main(int argc, const char* argv([])

{

// Execute main application function

return CSampleBasicApplication() .AppMain(argc, argv);
}

3. The application's initialization function creates an argument descriptions object, which
describes the expected command-line arguments and the usage context:

void CSampleBasicApplication::Init (void)
{
// Create command-line argument descriptions

auto ptr<CArgDescriptions> arg desc(new CArgDescriptions);

// Specify USAGE context
arg_desc->SetUsageContext (GetArguments () .GetProgramBasename (),

"CArgDescriptions demo program");

// Setup arg.descriptions for this application
SetupArgDescriptions (arg _desc.release());

}

4. The application's Run() function prints those arguments into the standard output stream or
in a file.

More realistic examples of applications that use the NCBI C++ Toolkit are available.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic/basic_sample.cpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 10

Inside the NCBI Application Class

Here is a somewhat simplified view of the application's class definition:

class CNcbiApplication
{
public:
/// Main function (entry point) for the NCBI application.
/17
/// You can specify where to write the diagnostics
/// to (EAppDiagStream), and where to get
/// the configuration file (LoadConfig()) to load
/// to the application registry (accessible via GetConfig()).
/17
/// Throw exception if:
/// - not-only instance
/// - cannot load explicitly specified config.file
/// - SetupDiag() throws an exception
/17
/// If the application name is not specified, a default of "ncbi" is used.
/// Certain flags such as -logfile, -conffile, and -version are
/// special, so AppMain () processes them separately.
/// @return
/// Exit code from Run(). Can also return a non-zero value if
/// the application threw an exception.
/// @sa
/// Init(), Run(), Exit ()
int AppMain (int argc, const char **argv, const char **envp,

EAppDiagStream diag, const char* config, const stringé& name) ;

/// Initialize the application.

/17

/// The default behavior of this is "do nothing". If you have
/// special initialization logic that needs to be performed,
/// then you must override this method with your own logic.

virtual void Init (void);

/// Run the application.

/17

/// It is defined as a pure virtual method -- so you must(!)
/// supply theRun() method to implement the

/// application-specific logic.

/// @return

/// Exit code.

virtual int Run(void) = 0;

/// Cleanup on application exit.

/17

/// Perform cleanup before exiting. The default behavior of this
/// is "do nothing". If you have special cleanup logic that needs
/// to be performed, then you must override this method with

/// your own logic.

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

virtual void Exit (void);

/// Get the application's cached unprocessed command-line
/// arguments.

const CNcbiArgumentsé& GetArguments (void) const;

/// Get parsed command-line arguments.

/17

/// Get command-line arguments parsed according to the arg
/// descriptions set by SetArgDescriptions(). Throw exception
/// if no descriptions have been set.

/// @return

/// The CArgs object containing parsed cmd.-line arguments.
/// @sa

/// SetArgDescriptions() .

const CArgsé& GetArgs (void) const;

/// Get the application's cached environment.

const CNcbiEnvironmenté& GetEnvironment (void) const;

/// Get the application's cached configuration parameters.

const CNcbiRegistry& GetConfig(void) const;

/// Flush the in-memory diagnostic stream (for "eDS ToMemory"

/// case only).

/17

/// In case of "eDS ToMemory", the diagnostics is stored in

/// the internal application memory buffer ("m DiagStream").

/// Call this function to dump all the diagnostics to stream "os" and
/// purge the buffer.

/// @param os

/// Output stream to dump diagnostics to. If it is NULL, then

/// nothing will be written to it (but the buffer will still be

/// purged) .

/// @param close diag

/// If "close diag" is TRUE, then also destroy "m DiagStream".

/// @return

/// Total number of bytes actually written to
SIZE TYPE FlushDiag (CNcbiOstream* os, bool close diag = false);

" "

os

/// Get the application's "display" name.

177/

/// Get name of this application, suitable for displaying
/// or for using as the base name for other files.

/// Will be the 'name' argument of AppMain if given.

/// Otherwise will be taken from the actual name of the
/// application file or argv[0].

string GetProgramDisplayName (void) const;

protected:

/// Setup application specific diagnostic stream.

Portability, Core Functionality and Application Framework

Page 11

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

/17
/17
/17
/17
/17
/17

Called from SetupDiag when it is passed the eDS AppSpecific
parameter. Currently, this calls SetupDiag(eDS ToStderr) to setup
diagonistic stream to the std error channel.

@return

TRUE if successful, FALSE otherwise.

virtual bool SetupDiag AppSpecific(void);

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/77
/77
/17
/77
/77
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

Load configuration settings from the configuration file to

the registry.

Load (add) registry settings from the configuration file

specified as the "conf" arg passed to AppMain(). The
"conf" argument has the following special meanings:

- NULL -- don't even try to load the registry from any
file at all;

- non-empty -- 1f "conf" contains a path, then try to load
from theconf.file of name "conf" (only!). Else -

see NOTE.

TIP: if the path is not fully qualified then:

if it starts from "../" or "./" -- look

starting from the current working dir.

- empty -- compose conf.file name from the application
name plus ".ini". If it does not match an existing
file, then try to strip file extensions, e.g., for

"my app.cgi.exe" -- try subsequently:

"my app.cgi.exe.ini", "my app.cgi.ini",

"my app.ini".

NOTE:

If "conf" arg is empty or non-empty, but without path, then
config file will be sought for in the following order:

- in the current work directory;

- in the dir defined by environment variable "NCBI";

- in the user home directory;

- in the program dir.

Throw an exception if "conf" is non-empty, and cannot open

file.

Throw an exception if file exists, but contains invalid entries.
@param reg

The loaded registry is returned via the reg parameter.

@param conf

The configuration file to loaded the registry entries from.
@return

TRUE only if the file was non-NULL, found and successfully

read.

virtual bool LoadConfig(CNcbiRegistryé& reg, const string* conf);

Portability, Core Functionality and Application Framework

Page 12

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 13

The AppMain() function is also inherited from the parent class. Although this function accepts
up to six arguments, this example passes only the first two, with missing values supplied by
defaults. The remaining four arguments specify:

* (#3) a NULL-terminated array of "\0'-terminated character strings from which the
environment variables can be read

* (#4) how to setup a diagnostic stream for message posting
* (#5) the name of a .ini configuration file (see above for its default location)
* (#6) a program name (to be used in lieu of argv[0])

AppMain() begins by resetting the internal data members with the actual values provided by
the arguments of main(). Once these internal data structures have been loaded, AppMain() calls
the virtual functions Init(), Run(), and Exit() in succession to execute the application.

The Init() and Exit() virtual functions are provided as places for developers to add their own
methods for specific applications. If your application does not require additional initialization/
termination, these two functions can be left empty or simply not implemented. The Run()
method carries out the main work of the application.

The FlushDiag() method is useful if the diagnostic stream has been set to eDS_toMemory,
which means that diagnostic messages are stored in an internal application memory buffer.
You can then call FlushDiag() to output the stored messages on the specified output stream.
The method will also return the number of bytes written to the output stream. If you specify
NULL for the output stream, the memory buffers containing the diagnostic messages will be
purged but not deallocated, and nothing will be written to the output. Ifthe close _diag parameter
to FlushDiag() is set to true, then the memory buffers will be deallocated (and purged, of
course).

The GetProgramDisplayName() method simply returns the name of the running application,
suitable for displaying in reports or for using as the base name for building other related file
names.

The protected virtual function SetupDiag AppSpecific() can be redefined to set up error
posting specific for your application. SetupDiag_AppSpecific() will be called inside AppMain
() by default if the error posting has not been set up already. Also, if you pass diag =
eDS_AppSpecific to AppMain(), then SetupDiag AppSpecific() will be called for sure,
regardless of the error posting setup that was active before the AppMain() call.

The protected virtual function LoadConfig() reads the program's .ini configuration file to load
the application's parameters into the registry. The default implementation of LoadConfig()
expects to find a configuration file named <program name>.ini and, if the

DIAG POST LEVEL environment variable is set to "Info", it will generate a diagnostics
message if no such file is found.

The NCBI application (built by deriving from CNcbiApplication) throws the exception
CAppException when any of the following conditions are true:

* Command-line argument description cannot be found and argument descriptions have
not been disabled (via call to protected method DisableArgDescription().

* Application diagnostic stream setup has failed.
* Registry data failed to load from a specified configuration file.

* An attempt is made to create a second instance of the CNcbiApplication (at any time,
only one instance can be running).

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 14

+ The specified configuration file cannot be opened.

As shown above, source files that utilize the CNcbiApplication class must #include the header
file where that class is defined, corelib/ncbiapp.hpp, in the include/ directory. This header file
in turn includes corelib/ncbistd.hpp, which should always be #include'd.

Processing Command-Line Arguments

This section discusses the classes that are used to process command-line arguments. A
conceptual overview of these classes is covered in an introductory section. This section
discusses these classes in detail and gives sample programs that use these classes.

This section discusses the following topics:

» Capabilities of the Command-Line API
« The Relationships between the CArgDescriptions, CArgs, and CArgValue Classes

+ Command-Line Syntax

+ The CArgDescriptions Class

+ The CArgs Class: A Container Class for CArgValue Objects

+ CArgValue Class: The Internal Representation of Argument Values
* Supporting Command-Based Command Lines

+ Code Examples

Capabilities of the Command-Line API

The set of classes for argument processing implement automated command line parsing.
Specifically, these classes allow the developer to:

« Specify attributes of expected arguments, such as name, synopsis, comment, data type,
etc.

+ validate values of the arguments passed to the program against these specifications
+ validate the number of positional arguments in the command line
+ generate a USAGE message based on the argument descriptions
NOTE: -h flag to print the USAGE is defined by default.
+ access the input argument values specifically typecast according to their descriptions

Normally, a CArgDescriptions object that contains the argument description is required and
should be created in the application's Init() function before any other initialization. Otherwise,
CNcbiApplication creates a default one, which allows any program that uses the NCBI C++
Toolkit to provide some standard command -line options, namely:

* to obtain a general description of the program as well as description of all available
command-line parameters (-h flag)

+ to redirect the program's diagnostic messages into a specified file (-logfile key)

* to read the program's configuration data from a specified file (-conffile key)

See Table 3 for the standard command-line options for the default instance of
CArgDescriptions.

To avoid creation of a default CArgDescriptions object that may not be needed, for instance
if the standard flags described in Table 3 are not used, one should call the
CNcbiApplication::DisableArgDescriptions() function from an application object constructor.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 15

It is also possible to use the CNcbiApplication::HideStdArgs(THideStdArgs hide mask)
method to hide description of the standard arguments (-h, -logfile, -conffile) in the USAGE
message. Please note: This only hides the description of these flags; it is still possible to use
them.

The Relationships between the CArgDescriptions, CArgs, and CArgValue Classes

The CArgDescriptions class provides an interface to describe the data type and attributes of
command-line arguments via a set of AddXxx() methods. Additional constraints on the
argument values can be imposed using the SetConstraint() method. The CreateArgs() method
is passed the values of all command-line arguments at runtime. This method verifies their
overall syntactic structure and matches their values against the stored descriptions. If the
arguments are parsed successfully, a new CArgs object is returned by Create Args().

The resulting CArgs object will contain parsed, verified, and ready-to-use argument values,
which are stored as CArgValue. The value of a particular argument can be accessed using the
argument's name (as specified in the CArgDescriptions object), and the returned CArgValue
object can then be safely type-cast to a correct C++ type (int, string, stream, etc.) because the
argument types have been verified. These class relations and methods can be summarized
schematically as shown in Figure 1.

The last statement in this example implicitly references a CArgValue object, in the value
returned when the [] operator is applied to myArgs. The method CArgValue::AsDouble() is
then applied to this object to retrieve a double.

Command-Line Syntax

Note: The C++ Toolkit supports two types of command line: "command-based" and
"command-less". A "command-based" command line begins with a "command" (a case-
sensitive keyword), typically followed by other arguments. A "command-less" command line
doesn't contain such "commands".

This section deals primarily with command-less command lines, while the Supporting
Command-Based Command Lines section covers command-based command lines.

Command-less command-line arguments fit the following profile:
progname {arg key, arg key opt, arg key dflt, arg flag} [--]
{arg pos} {arg pos opt, arg pos dflt}

{arg extra} {arg extra opt}

where:

arg key

-<key> <value> -- (mandatory)

arg_key opt

[-<key> <value>] -- (optional, without default value)

arg_key dflt

[-<key> <value>] -- (optional, with default value)

arg flag -<flag> -- (always optional)

-- optional delimiter to indicate the beginning of pos. args
arg_pos <value> -- (mandatory)

arg_pos_opt [<value>] -- (optional, without default value)

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 16

arg_pos_dflt

[<value>] -- (optional, with default value)

arg_extra

<value> -- (dep. on the constraint policy)

arg_extra_opt

[<value>] -- (dep. on the constraint policy)

and: <key> must be followed by <value>. In all cases '-<key> <value>' is equivalent to '-
<key>=<value>'. If '='is used as separator, the value can be empty ('-<key>="). For arguments
with a single-char name fOptionalSeparator flag can be set. In this case the value can be
specified without any separator: -<k><value>

NOTE: No other argument's name can start with the same character to avoid conflicts. <flag>
and <key> are case-sensitive, and they can contain only alphanumeric characters and dash ('-').
Only one leading dash is allowed. The leading dash can be used to create arguments which
look like --<key> in the command line. <value> is an arbitrary string (additional constraints
can be applied in the argument description, see "EType"). {arg pos***} and {arg extra***}
are position-dependent arguments, with no tag preceding them. {arg pos***} arguments have
individual names and descriptions (see methods AddPositional***). {arg extra***}
arguments have one description for all (see method AddExtra). User can apply constraints on
the number of mandatory and optional {arg extra***} arguments.

Examples of command-less command lines:

MyPrograml -reverse -depth 5 -name Lisa -log foo.log l.c 2.c 3.c
MyProgram2 -i foo.txt -o foo.html -color red
MyProgram3 -a -quiet -pattern 'Error:' bar.txt

MyProgram4 -int-value=5 -str-value= -kValue

The Supporting Command-Based Command Lines section addresses how to support
command-based command lines, such as:

svn diff myapp.cpp

svn checkin -m "message" myapp.cpp

The CArgDescriptions (*) class

CArgDescriptions contains a description of unparsed arguments, that is, user-specified
descriptions that are then used to parse the arguments. CArgDescriptions is used as a container
to store the command-line argument descriptions. The argument descriptions are used for
parsing and verifying actual command-line arguments.

The following is a list of topics discussed in this section:

* The CArgDescriptions Constructor

* Describing Argument Attributes

* Argument Types
« Restricting the Input Argument Values

* Implementing User-defined Restrictions Using the CArgAllow Class
» Using CArgDescriptions in Applications
* Generating a USAGE Message

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 17

The CArgDescriptions Constructor

The constructor for CArgDescriptions accepts a Boolean argument, auto_help, set to TRUE
by default.

CArgDescriptions(bool auto_help = true);

If "auto_help" is passed TRUE, then a special flag "-h" will be added to the list of accepted
arguments, and passing "-h" in the command line will print out USAGE and ignore all other
passed arguments.

Describing Argument Aftributes

CNcbiArguments contains many methods, called AddXxx(). The "Xxx" refers to the types of
arguments, such as mandatory key (named) arguments, optional key arguments, positional
arguments, flag arguments, etc. For example, the AddKey() method refers to adding a
description for a mandatory key argument.

The methods for AddXxx() are passed the following argument attributes:

* name, the string that will be used to identify the variable, as in: CArgs[name]. For all
tagged variables in a command line, name is also the key (or flag) to be used there, as
in: "-name value" (or "-name").

* synopsis, for key *** arguments only. The automatically generated USAGE message
includes an argument description in the format: -name [synopsis] <type, constraint>
comment.

« comment, to be displayed in the USAGE message, as described above.

* value type, one of the scalar values defined in the EType enumeration, which defines
the type of the argument.

* default, for key dflt and pos_dflt arguments only. A default value to be used if the
argument is not included in the command line (only available for optional program
arguments).

* flags, the flags argument, to provide additional control of the arguments' behavior.

Argument Types

The CArgDescriptions class enables registration of command-line arguments that fit one of
the following pattern types:

Mandatory named arguments:-<key> <value> (example: -age 31) Position-independent
arguments that must be present in the command line. AddKey (key, synopsis, comment,
value_type, flags)

Optional named arguments:[-<key> <value>] (example: -name Lisa) Position-independent
arguments that are optional. AddOptionalKey (key, synopsis, comment, value type, flags) A
default value can be specified in the argument's description to cover those cases where the
argument does not occur in the command line. AddDefaultKey (key, synopsis, comment,
value_type, default value, flags)

Optional named flags:[-<flag>] (example: -reverse) Position-independent boolean (without
value) arguments. These arguments are always optional. AddFlag (flag, comment, set_value)

Mandatory named positional arguments:<value> (example: 12 Feb) These are position-
dependent arguments (of any type), which are read using a value only. They do, however, have
names stored with their descriptions, which they are associated with in an order-dependent

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 18

fashion. Specifically, the order in which untagged argument descriptions are added to the
CArgDescriptions object using AddPositional() defines the order in which these arguments
should appear in the command line. AddPositional (key, comment, value type, flags)

Optional named positional arguments:[value] (example: foo.txt bar) Position-dependent
arguments that are optional. They always go after the mandatory positional arguments. The
order in which untagged argument descriptions are added to the CArgDescriptions object using
Add[Optional|Default]Positional() defines the order in which these arguments should appear
in the command line. AddOptionalPositional (key, comment, value_type, flags)
AddDefaultPositional (key, comment, value type, default value, flags)

Unnamed positional arguments (all of the same type: <valuel> | [valueN] (example: foo.c
bar.c xxx.c). These are also position-dependent arguments that are read using a value only.
They are expected to appear at the very end of the command line, after all named arguments.
Unlike the previous argument type, however, these arguments do not have individual, named
descriptions but share a single "unnamed" description. You can specify how many mandatory
and how many optional arguments to expect using n_mandatory and n_optional parameters:
AddExtra (n_mandatory, n_optional, comment, type, flags)

Aliases can be created for any arguments. They allow using an alternative argument name in
the command line. However, only the original argument name can be used to access its value
in the C++ code.

Any of'the registered descriptions can be tested for existence and/or deleted using the following
CArgDescriptions methods:

bool Exist (const string& name) const;

void Delete(const stringé& name) ;

These methods can also be applied to the unnamed positional arguments (as a group), using:
Exist(kEmptyStr) and Delete(kEmptyStr).

Restricting the Input Argument Values

Although each argument's input value is initially loaded as a simple character string, the
argument's specified type implies a restricted set of possible values. For example, if the type
is elnteger, then any integer value is acceptable, but floating point and non-numerical values
are not. The EType enumeration quantifies the allowed types and is defined as:

/// Available argument types.

enum EType {

eString = 0, ///< An arbitrary string

eBoolean, ///< {'true', 't', 'false', 'f'}, case-insensitive
eInteger, ///< Convertible into an integer number (int)
eDouble, ///< Convertible into a floating point number (double)
eInputFile, ///< Name of file (must exist and be readable)
eOutputFile, ///< Name of file (must be writeable)

k_EType Size ///< For internal use only

bi

Implementing User-defined Restrictions Using the CArgAllow Class

It may be necessary to specify a restricted range for argument values. For example, an integer
argument that has a range between 5 and 10. Further restrictions on the allowed values can be

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 19

specified using the CArgDescriptions::SetConstraint() method with the CArgAllow class. For
example:

auto ptr<CArgDescriptions> args (new CArgDescriptions);

// add descriptions for "firstint" and "nextint" using AddXxx(...)

CArgAllow* constraint = new CArgAllow Integers(5,10);
args->SetConstraint ("firstInt", constraint);

args->SetConstraint ("nextInt", constraint);

This specifies that the arguments named "firstInt" and "nextInt" must both be in the range [5,
10].

The CArgAllow Integers class is derived from the abstractCArgAllow class. The constructor
takes the two integer arguments as lower and upper bounds for allowed values. Similarly, the
CArgAllow_Doubles class can be used to specify a range of allowed floating point values. For
both classes, the order of the numeric arguments does not matter, because the constructors will
use min/max comparisons to generate a valid range.

A third class derived from the CArgAllow class is the CArgAllow_Strings class. In this case,
the set of allowed values cannot be specified by a range, but the following construct can be
used to enumerate all eligible string values:

CArgAllow* constraint = (new CArgAllow Strings())->
Allow ("this)->Allow ("that")->Allow ("etc");

args.SetConstraint ("someString", constraint);

Here, the constructor takes no arguments, and the Allow() method returns this. Thus, a list of
allowed strings can be specified by daisy-chaining a set of calls to Allow(). A bit unusual yet
terser notation can also be used by engaging the comma operator, as in:

args.SetConstraint ("someString",

& (*new CArgAllow Strings, "this", "that", "etc"));

There are two other pre-defined constraint classes: CArgAllow_Symbols and
CArgAllow_String. If the value provided on the command line is not in the allowed set of
values specified for that argument, then an exception will be generated. This exception can be
caught and handled in the usual manner, as described in the discussion of Generating a USAGE

message.

Using CArgDescriptions in Applications

The description of program arguments should be provided in the application's Init() function
before any other initialization. A good idea is also to specify the description of the program
here:

auto_ptr<CArgDescriptions> arg desc(new CArgDescriptions);
arg _desc->SetUsageContext (GetArguments () .GetProgramBasename (),
"program's description here");

// Define arguments, if any

SetupArgDescriptions (arg _desc.release());

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Integers.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Doubles.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Strings.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Symbols.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__String.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 20

The SetUsageContext() method is used to define the name of the program and its description,
which is to be displayed in the USAGE message. As long as the initialization of the application
is completed and there is still no argument description, CNcbiApplication class provides a
"default" one. This behavior can be overridden by calling the Disable ArgDescriptions() method
of CNcbiAppliation.

Generating a USAGE Message

One of the functions of the CArgDescriptions object is to generate a USAGE message
automatically (this gives yet another reason to define one). Once such object is defined, there
is nothing else to worry about; CNcbiApplication will do the job for you. The
SetupArgDescriptions() method includes parsing the command line and matching arguments
against their descriptions. Should an error occur, e.g., a mandatory argument is missing, the
program prints a message explaining what was wrong and terminates. The output in this case
might look like this:

USAGE

myApp -h -k MandatoryKey [optarg]

DESCRIPTION

myApp test program
REQUIRED ARGUMENTS

-k <String>

This is a mandatory alpha-num key argument
OPTIONAL ARGUMENTS

-h

Print this USAGE message; ignore other arguments
optarg <File Out>

This is an optional named positional argument without default

value

The message shows a description of the program and a summary of each argument. In this
example, the description of the input file argument was defined as:

arg_desc->AddKey ("k", "MandatoryKey",
"This is a mandatory alpha-num key argument",

CArgDescriptions::eString);

The information generated for each argument is displayed in the format:
me [synopsis] <type [, constraint] > comment [default =]

The arguments in the USAGE message can be arranged into groups by using SetCurrentGroup
() method of the CArgDescriptions object.

The CArgs (*) Class: A Container Class for CArgValue (*) Objects

The CArgs class provides a data structure where the values of the parsed arguments can be
stored and includes access routines in its public interface. Argument values are obtained from
the unprocessed command-line arguments via the CNcbiArguments class and then verified and
processed according to the argument descriptions defined by the user in CArgDescriptions.
The following describes the public interface methods in CArgs:

class CArgs

{
public:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgs.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 21

/// Constructor.

CArgs (void) ;

/// Destructor.

~CArgs (void) ;

/// Check existence of argument description.

/17

/// Return TRUE if arg 'name' was described in the parent CArgDescriptions.
bool Exist(const stringé& name) const;

/// Get value of argument by name.

/17

/// Throw an exception if such argument does not exist.

/// @sa

/// Exist () above.

const CArgValue& operator[] (const string& name) const;

/// Get the number of unnamed positional (a.k.a. extra) args.

size t GetNExtra(void) const { return m nExtra; }

/// Return N-th extra arg value, N = 1 to GetNExtra().

const CArgValue& operator[] (size t idx) const;

/// Print (append) all arguments to the string 'str' and return 'str'.
stringé& Print (stringé& str) const;

/// Add new argument name and value.

/17

/// Throw an exception if the 'name' is not an empty string, and if
/// there is an argument with this name already.

/17

/// HINT: Use empty 'name' to add extra (unnamed) args, and they will be
/// automatically assigned with the virtual names: '#1', '#2', '#3', etc.
void Add (CArgValue* arqg);

/// Check if there are no arguments in this container.

bool IsEmpty(void) const;

bi

The CArgs object is created by executing the CArgDescriptions::CreateArgs() method. What
happens when the CArgDescriptions::CreateArgs() method is executed is that the arguments
of the command line are validated against the registered descriptions, and a CArgs object is
created. Each argument value is internally represented as a CArgValue object and is added to
a container managed by the CArgs object.

All named arguments can be accessed using the [] operator, as in: myCArgs["f"], where "{"
is the name registered for that argument. There are two ways to access the N-th unnamed
positional argument: myCArgs["#N"] and myCArgs[N], where 1 <= N <= GetNExtra().

CArgValue (*) Class: The Internal Representation of Argument Values

The internal representation of an argument value, as it is stored and retrieved from its CArgs
container, is an instance of a CArgValue. The primary purpose of this class is to provide type-
validated loading through a set of AsXxx() methods where "Xxx" is the argument type such
as "Integer", "Boolean", "Double", etc. The following describes the public interface methods
in CArgValue:

class CArgValue : public CObject

{
public:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgValue.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 22

/// Get argument name.

const stringé& GetName (void) const { return m Name; }

/// Check if argument holds a value.

/17

/// Argument does not hold value if it was described as optional argument
/// without default value, and if it was not passed a value in the command
/// line. On attempt to retrieve the value from such "no-value" argument,

/// exception will be thrown.

virtual bool HasValue (void) const = 0;
operator bool (void) const { return HasValue(); }
bool operator! (void) const { return !HasValue(); }

/// Get the argument's string value.

/17

/// If it is a value of a flag argument, then return either "true"
/// or "false".

/// @sa
/// AsInteger (), AsDouble(), AsBoolean/()
virtual const stringé& AsString(void) const = 0;

/// Get the argument's integer value.
/77
/// If you request a wrong value type, such as a call to "AsInteger ()"

/// for a "boolean" argument, an exception is thrown.

/// @sa
/// AsString(), AsDouble, AsBoolean ()
virtual int AsInteger (void) const = 0;

/// Get the argument's double value.

/17

/// If you request a wrong value type, such as a call to "AsDouble()"
/// for a "boolean" argument, an exception is thrown.

/// @sa

/// AsString(), AsInteger, AsBoolean/()

virtual double AsDouble (void) const = 0;

/// Get the argument's boolean value.

/77

/// If you request a wrong value type, such as a call to "AsBoolean()"

/// for a "integer" argument, an exception is thrown.

/// @sa
/// AsString (), AsInteger, AsDouble ()
virtual bool AsBoolean (void) const = 0;

/// Get the argument as an input file stream.
virtual CNcbiIstreamé& AsInputFile (void) const = 0;
/// Get the argument as an output file stream.
virtual CNcbiOstreamé& AsOutputFile (void) const = 0;
/// Close the file.

virtual void CloseFile (void) const = 0;

bi

Each of these AsXxx() methods will access the string storing the value of the requested
argument and attempt to convert that string to the specified type, using for example, functions
such as atoi() or atof(). Thus, the following construct can be used to obtain the value of a floating
point argument named "f":

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 23
float £ = args["f"].AsDouble();

An exception will be generated with an appropriate error message, if:
* the conversion fails, or

» "f"was described as an optional key or positional argument without default value (i.e.,
using the AddOptional***() method), and it was not defined in the command line.
Note that you can check for this case using the CArgValue::HasValue() method.

Supporting Command-Based Command Lines

For some applications, multiple command-based command line forms are needed, with
different arguments depending on the command. For example:

myapp list
myapp create <queue>
myapp post <queue> [-imp importance] <message>

myapp query [queue]

Commands are case-sensitive keywords and are typically followed by other arguments.
Programs that support command-based command lines can support any number of commands
(each with its own set of supported arguments), and may optionally support a command-less
command line in addition.

Command-based command lines have a requirement that command-less command lines don't
- the ability to have optional arguments between mandatory arguments. Opening arguments
address this requirement. Opening arguments are essentially identical to mandatory positional
arguments except that opening arguments must precede optional arguments whereas
mandatory positional arguments must follow them. Thus, opening arguments allow usage
forms such as the "post" command in the above example, which has an optional argument
between mandatory arguments.

At a high level, setting up a program to support a command-less command-line requires
creating a CArgDescriptions object, adding argument descriptions to it, and passing it to
SetupArgDescriptions().

Setting up a program to support command-based command lines is similar, but requires a
CCommandArgDescriptions object instead. The CCommandArgDescriptions class is derived
from CArgDescriptions, so all the same functionality is available; however, the AddCommand
() method of CCommandArgDescriptions allows you to create multiple CArgDescriptions
objects (one for each command) in addition to the overall program description. Other
command-specific features are also provided, such as command grouping. Note: The
ECommandPresence parameter of the CCommandArgDescriptions constructor controls
whether or not the user must enter a command-based command line. Use eCommandOptional
only when you are setting up both command-less and command-based command lines.

Programs that support command-based command lines must execute these steps:

1 Create a command descriptions object (class CCommandArgDescriptions) for the
overall program description.

Create argument descriptions objects (class CArgDescriptions) for each command.

Add the actual argument descriptions to the argument descriptions objects using
methods such as AddOpening(), AddPositional(), etc.

4 Add each argument descriptions object to the overall command descriptions object.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCommandArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 24

5 Determine which command was specified on the command line.
6 Process the appropriate arguments for the given command.

For a sample program that demonstrates argument processing for command-based command
lines, see multi_command.cpp.

For more information on standard command lines and general information applicable to all
command line processing, see the Command-Line Syntax and CArgDescriptions sections.

Code Examples

A simple application program, test ncbiargs sample.cpp demonstrates the usage of these
classes for argument processing. See also test ncbiargs.cpp (especially main(), s_InitTest0()
and s_RunTest0() there), and asn2asn.cpp for more examples.

Namespace, Name Concatenation, and Compiler-specific Macros

The file ncbistl.hpp provides a number of macros on namespace usage, name concatenation,
and macros for handling compiler-specific behavior.

These topics are discussed in greater detail in the following subsections:
+ NCBI Namespace
» Other Name Space Macros

* Name Concatenation

» Compiler Specific Macros

NCBI Namespace

All new NCBI classes must be in the ncbi:: namespace to avoid naming conflicts with other
libraries or code. Rather than enclose all newly defined code in the following, it is, from a
stylistic point of view, better to use specially defined macros such as BEGIN_NCBI_SCOPE,
END_NCBI_SCOPE, USING_NCBI_SCOPE:

namespace ncbi {
// Indented code etc.
}

The use of BEGIN_NCBI SCOPE, END NCBI SCOPE, and USING NCBI SCOPE is
discussed in use of the NCBI name scope.

Other Namespace Macros

The BEGIN NCBI _SCOPE, END NCBI SCOPE, and USING NCBI_SCOPE macros in
turn use the more general purpose BEGIN_SCOPE(ns), END SCOPE(ns), and
USING_SCOPE(ns) macros, where the macro parameter ns is the namespace being defined.
All NCBI-related code should be in the ncbi:: namespace so the BEGIN_NCBI_SCOPE,
END_NCBI_SCOPE, and USING_NCBI_SCOPE should be adequate for new NCBI code.
However, in those rare circumstances, if you need to define a new name scope, you can directly
use the BEGIN_SCOPE(ns), END SCOPE(ns), and USING SCOPE(ns) macros.

Name Concatenation

The macros NCBI_ NAME2 and NCBI_NAMES3 define concatenation of two and three names,
respectively. These are used to build names for program-generated class, struct, or method
names.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic/multi_command.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_style

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 25

Compiler-specific Macros

To cater to the idiosyncrasies of compilers that have non-standard behavior, certain macros are
defined to normalize their behavior.

The BREAK(it) macro advances the iterator to the end of the loop and then breaks out of the
loop for the Sun WorkShop compiler with versions less than 5.3. This is done because this
compiler fails to call destructors for objects created in for-loop initializers. This macro prevents
trouble with iterators that contain CRefs by advancing them to the end using a while-loop, thus
avoiding the "deletion of referenced CObject" errors. For other compilers, BREAK(it) is
defined as the keyword break.

The ICC compiler may fail to generate code preceded by template<>. In this case, use the
macro EMPTY TEMPLATE instead, which expands to an empty string for the ICC compiler
and to template<> for all other compilers.

For MSVC v6.0, the for keyword is defined as a macro to overcome a problem with for-loops
in the compiler. The local variables in a for-loop initalization are visible outside the loop:

for (int i; i < 10; ++1i) {

// scope of i

}

// 1 should not be visible, but is visible in MSVC 6.0

Another macro called NCBI_EAT SEMICOLON is used in creating new names that can allow
a trailing semicolon without producing a compiler warning in some compilers.

Configuration Parameters

The CParam class is the preferred method for defining configuration parameters. This class
enables storing parameters with per-object values, thread-wide defaults, and application-wide
defaults. Global default values may be set through the application registry or the environment.
The following topics discuss using the CParam class.

* General Usage Information

* Macros for Creating Parameters

* Methods for Using Parameters

* Supporting Classes

General Usage Information

A CParam instance gets its initial value from one of three sources. If the application registry
specifies a value, then that value will be used. Otherwise if the environment specifies a value,
then that value will be used. Otherwise the default value supplied in the definition will be used.
Later, the value can be changed using various methods.

N.B. statically defined instances of configuration parameters will be assigned their default
values even if the environment and / or application registry specify (possibly different) values
for them. This is because they are constructed (using their default value) at program startup
and at that time the application framework for reading from the environment and application
registry hasn't been set up yet. Therefore it is important to call the Reset() method for these
parameters prior to reading their value. Alternatively, the GetState() method will indicate
whether or not all possible sources were checked when a value was assigned to a configuration
parameter - if they were, it will have either the value eState_Config or eState User.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 26

For more information on the application framework, the environment, and the application
registry, see the sections on CNcbiApplication, CNcbiEnvironment, and CNcbiRegistry.

Be sure to include the header file in your source files:
#include <corelib/ncbi param.hpp>
and include the NCBI core library in your makefile:

LIB = xncbi

Macros for Creating Parameters

The CParam class is not designed to be used directly for creating configuration parameter
variables. Instead, it supplies macros which your code should use. These macros have
parameters for types, sections, names, default values, flags, and environment.

The type macro parameter must:
* DbeaPOD type;
* be initializable by the pre-processor from a literal;
+ Dbe readable from and writable to streams.

Typically, the type is a simple type such as string, bool, int, or enum, as these are most
convenient for specifying parameter values.

The section macro parameter indicates which section of a configuration file the parameter
should be located in.

The name macro parameter uniquely identifies the parameter within the section.

The default_value macro parameter provides the default value for the parameter - i.e. the value
the parameter has from the time it is created until it is overwritten by a value from the
environment, configuration file, or user code - and the value it is assigned by the Reset()
method.

The flags macro parameter (a bitwise OR of enum values) can be used to control certain
behavior options for the parameter. Currently, these enum values are:

Enum Value

Purpose

eParam Default

Default flags

eParam_NoLoad

Do not load from registry or environment

eParam_NoThread

Do not use per-thread values

See the enum definition for an up-to-date list.

The env macro parameter can be used to specify the environment variable to be searched. If
the env macro parameter is not used, the environment will be searched for a variable having
the form NCBI_ CONFIG _ <section> <name> (note: the first underscore is single; the others
are double).

CParam instances must be declared and defined before use. A typedef may also be created.

Portability, Core Functionality and Application Framework

http://en.wikipedia.org/wiki/Plain_old_data_structures
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ENcbiParamFlags&d=

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 27
To declare simple parameters, use the NCBI PARAM_ DECL macro:
NCBI PARAM DECL(type, section, name);
For example, declaring a host name parameter for a server might look like:
NCBI PARAM DECL (string, XyzSrv, Host);
To declare an enum:
NCBI PARAM ENUM DECL (type, section, name);

Additional macros for parameter declarations include:

*+ NCBI PARAM DECL EXPORT and NCBI PARAM ENUM DECL EXPORT
to include the EXPORT specifier (i.e. NCBI_XNCBI EXPORT). Note: this form must
be used if the parameter is defined in a header file and compiled into a library.
Otherwise the linker may create several instances of the parameter which could contain
different values.

To define simple parameters, use the NCBI PARAM DEF or NCBI PARAM DEF EX
macro:

NCBI PARAM DEF (type, section, name, default value); // OR
NCBI_PARAM DEF EX(type, section, name, default value, flags, env);

For example, an extended definition of a host name parameter for a server could look like:

NCBI_ PARAM DEF EX(string, Xyz, Host, "xyz.nih.gov", eParam NoThread,
XYZ_ HOST) ;

To define an enum:

NCBI_PARAM ENUM ARRAY (type, section, name); // USE THIS AND EITHER:
NCBI PARAM ENUM DEF (type, section, name, default value); // OR:
NCBI_ PARAM ENUM DEF EX(type, section, name, default value, flags, env);

For example, an enum definition could look like:

NCBI_PARAM ENUM ARRAY (EMyEnum, MySection, MyEnumParam)
{
{"My A", eMyEnum A},
{"My B", eMyEnum B},
{"My C", eMyEnum C},
bi
NCBI_ PARAM ENUM DEF (EMyEnum, MySection, MyEnumParam, eMyEnum B);

An additional macro for parameter definitions is:
+ NCBI PARAM DEF IN SCOPE to define the parameter within a scope.

Another way to conveniently use a configuration parameter is to use the
NCBI_PARAM_TYPE macro to create an instance of a type. The following example illustrates
the declaration, definition, typedef, and use of a configuration parameter:

Portability, Core Functionality and Application Framework

300g IY[001 ++D 19ON 8UL

Page 28

NCBI PARAM DECL (bool, NCBI, ABORT ON COBJECT THROW);

NCBI PARAM DEF EX(bool, NCBI, ABORT ON COBJECT THROW, false,

eParam NoThread, NCBI ABORT ON COBJECT THROW);

typedef NCBI PARAM TYPE (NCBI, ABORT ON COBJECT THROW) TAbortOnCObectThrow;

void CObjectException::x InitErrCode (CException::EErrCode err code)
{

CCoreException::x InitErrCode (err code);

static TAbortOnCObectThrow sx abort on_throw;

if (sx_abort on_ throw.Get()) {

Abort () ;

}

Methods for Using Parameters

Important methods of the CParam class are:

Method Static | Purpose

GetState() Yes Get the current state of the parameter. The state indicates the last source checked when assigning its value. N.B. it
specifically does not indicate the origin of the current value. See the EParamState enum for specific values.

Get() No Get the current parameter value.

Set() No Set a new parameter value (this instance only).

Reset() No Reset the value as if it has not been initialized yet.

GetDefault() Yes Get the global default value.

SetDefault() Yes Set a new global default value.

ResetDefault() Yes Reload the global default value from the environment/registry or reset it to the initial value specified in

NCBI PARAM DEF.

300g Y001 ++D 190N 8UL

GetThreadDefault() Yes Get the thread-local default value if set, otherwise the global default value.

SetThreadDefault() Yes Set a new thread-local default value.

ResetThreadDefault() | Yes Reset the thread default value as if it has not been set.

300g Y001 ++D 190N 83Ul

Typical uses involve getting the current or default values:

// get a parameter's default value
string bots = NCBI_PARAM TYPE (CGI,Bots) ::GetDefault();

// get a parameter's current value
typedef NCBI_ PARAM TYPE (READ FASTA, USE NEW IMPLEMENTATION) TParam NewImpl;
TParam NewImpl new impl;
if (new_impl.Get()) {
// do something
}

Supporting Classes

The CParam class is packaged with two supporting classes: CParamException and
CParamParser.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCParamBase.html#0f2898884063b661395c511bcdb1c6ea

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 29

CParamException will be thrown by the parameter parser if invalid parameter values are
specified in the environment, configuration file, or code.

CParamParser is a templatized helper class that parses parameter literals into parameter values,
using its StringToValue() method. [Note: the "String" in this method name refers to the string
of characters in the literal being parsed (regardless of the type it represents), not to the std::string
type.] A ValueToString() method is also provided for completeness.

CParamParser templates have been pre-defined for string, bool, int, and enum types. If you
need to create a configuration parameter that is more complex than these types, then you will
need to either instantiate CParamParser for your type or define appropriate operator<<() and
operator>>() methods. This will:

+ enable parsing of the default value specified in the definition of your complex
configuration parameter;

+ enable that type to be read from the application registry or environment; and
+ enable that type to be assigned values via the Set*() methods.

Note: Defining the appropriate operator<<() and operator>>() methods is preferrable to
instantiating CParamParser for your type because:

+ instantiating CParamParser for your type would make it more difficult to change the
CParamParser template, if that should become necessary; and

+ operator<<() and operator>>() can be useful in other contexts.

Using the CNcbiRegistry Class

If for some reason the CParam class cannot be used to define configuration parameters, the
CNcbiRegistry class may be used instead.

This section provides reference information on the use of the CNcbiRegistry class. For an
overview of this class, refer to the introductory chapter. This class is also discussed in the
library configuration chapter.

The following topics are discussed in this section:

« Working with the Registry class: CNcbiRegistry

« Syntax of the Registry Configuration File

* Search Order for Initialization (*.ini) Files

+ Fine-Tuning Registry Parameters Using [Registry::EFlags
* Main Methods of CNcbiRegistry

« Additional Registry Methods

Working with the Registry Class: CNcbiRegistry

The CNcbiRegistry class is used to load, access, modify, and store runtime information read
from configuration files. Previously, these files were by convention named .*rc files on Unix-
like systems. The convention for all platforms now is to name such files *.ini (where * is by
default the application name). An exception to this rule is the system-wide registry, which is
named .ncbirc on Unix-like systems and ncbi.ini on Windows systems. The CNcbiRegistry
class can read and parse configuration files, search and edit retrieved information, and write
back to the file.

The following resources are checked when loading a registry:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiRegistry.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiRegistry.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 30

+ the environment

+ the overrides registry

+ the application registry
+ the system registry

+ inherited registries

In addition, registries can be loaded from files programmatically.

An environment registry is created from configuration parameters specified in the environment.
Often, such variables have the form NCBI CONFIG <section> <entry> (note the double
underscores) and can have corresponding entries in initialization files, but see the library
configuration chapter for details on specific parameters. Entries in the environment registry
have the highest precedence.

If the special environment variable NCBI CONFIG_OVERRIDES is defined, the
configuration file it names will be loaded as the overrides registry. This registry will have the
next highest precedence after the environment.

For the application registry, the name of the configuration file can be explicitly set with the -
conffile command-line argument, set (or disabled) with the conf argument of
CNcbiApplication:: AppMain(), or implicitly set (or disabled) according to search order
rules. If the -conffile command-line argument is supplied, that path will be used. If the conf
argument to AppMain() is supplied, the file will be determined according to Table 2. Otherwise,
the file will be determined according to search order rules. The application registry follows the
overrides registry in precedence.

When the application registry is successfully loaded, you can access it using the method
CNcbiApplication::GetConfig(). The application will throw an exception if the config file is
found, is not empty, and either cannot be opened or contains invalid entries. If the confargument
to CNcbiApplication:: AppMain() is not NULL and the config file cannot be found, then a
warning will be posted to the application diagnostic stream.

System-wide configuration parameters can be defined in the system registry. The system
registry will not be loaded if it contains the DONT USE NCBIRC entry in the NCBI section
or if the environment variable NCBI_ DONT_USE NCBIRC is defined. See the search
order section below for details. The system registry follows the application registry in
precedence.

Configuration files may "inherit" entries from other configuration files using the .Inherits entry
in the [NCBI] section. The .Inherits entry is a space- and/or comma- delimited list of file names.
Files having a .ini extension may be listed in the .Inherits entry without the .ini extension. Note
that extensionless file names are not supported in the .Inherits entry. Inherited registries have
the same precedence as the registry that inherited them.

Registries can be programmatically loaded from files by calling CNcbiRegistry::Read().
CNcbiApplication::LoadConfig() can also be called to "manually" load the application registry
- for example, if special flags are required. The precedence for programmatically loaded
registries depends on the flags they are loaded with. By default (or if loaded with the
IRegistry::fOverride flag) they will have greater precedence that previously loaded registries,
but if loaded with the IRegistry::fNoOverride flag, they will not override existing parameters.

Although registry objects can be instantiated and manipulated independently, they are typically
used by the CNcbiApplication class. Specifically, CNcbiApplication::AppMain() attempts to

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 31

load a registry with entries from all of the above sources (except programmatically loaded
registries). AppMain() will look for the system and application registries in multiple locations,
and possibly with a modified name, as described in the search order section below.

See the Registry and Environment sections of the library configuration chapter for more
information on controlling the registry via the environment.

Syntax of the Registry Configuration File

The configuration file is composed of section headers and "name=value" strings, which occur
within the named sections. It is also possible to include comments in the file, which are
indicated by a new line with a leading semicolon. An example configuration file is shown
below.

Registry file comment (begin of file)
MyProgram.ini

; parameters for sectionl

[sectionl]
namel = valuel and valuel.2
n-2.3 = " this value has two spaces at its very beginning and at the end "

name3 = this is a multi\

line value

name4 = this is a single line ended by back slash\\
name5 = all backslashes and \

new lines must be \\escaped\\...

[section2.9-bis]

; This is a comment...

name?2 = value?2

All comments and empty lines are ignored by the registry file parser. Line continuations, as
usual, are indicated with a backslash escape. More generally, backslashes are processed as:

+ [backslash] + [backslash] -- converted into a single [backslash]

+ [backslash] + [space(s)] + [EndOfLine] -- converted to an [EndOfLine]

* [backslash] + ["] -- converted into a ["]
Character strings with embedded spaces do not need to be quoted, and an unescaped double
quote at the very beginning or end of a value is ignored. All other combinations with [backslash]
and ["] are invalid.
The following restrictions apply to the section and name identifiers occurring in a registry file:

+ the string must contain only: [a-z], [A-Z], [0-9], [_.-/] characters

+ the interpretation of the string is not case sensitive, e.g., PATH == path == PaTh

+ all leading and trailing spaces will be truncated

A special syntax is provided for "including" the content of one section into another section:
.Include = section name
For example, this:

[section-a]

;section-a specific entries...

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 32

al = a one

.Include = common

[section-b]
;section-b specific entries...
bl = b one

.Include = common

[common]
;common entries
cl = c one

c2 = c two
is equivalent to:

[section-a]

;section-a specific entries...
al = a one

;common entries

cl = c one

c2 = c two

[section-b]

;section-b specific entries...

bl = b one
;common entries
cl = c one
c2 = c two

Another special syntax is provided for "including" other configuration files:

[NCBI]

.Inherits = subregistry list

Here, subregistry list is a comma- or space- separated list of one or more subregistry files.

Subregistry file names are not required to have a ".ini" extension. However if they do, the ".ini"

can be omitted from the subregistry list. For example, the specification:

[NCBI]

.Inherits = a

will select "a.ini". Subregistries can also define their own subregistries, thus permitting an
application to read a tree of configuration files.

Given a specification of:

[NCBI]
.Inherits = a b

an entry in "a.ini" or any of its subregistries will take priority over an identically named entry

in "b.ini" or any of its subregistries. This could be used, for example, to retain a default
configuration while working with a test configuration, such as in:

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 33

[NCBI]

.Inherits = mytest.ini myapp.ini
Entries in the main configuration file take priority over entries in subregistries.

Entries defined in a subregistry can be "undefined" by explicitly defining the entry as empty
in a higher priority registry file.

Finally, the environment variable NCBI CONFIG_OVERRIDES can be used to name a
configuration file whose entries override any corresponding entries in all the processed registry
files.

Search Order for Initialization (*.ini) Files

Note: This section discusses the search order for initialization files, which is only applicable
to the application and system initialization files. Please see the Working with the Registry
Class section for a discussion about the other sources of configuration information and the
relative precedence of all registry sources.

Note: See Table 2 for rules about how the conf argument to AppMain() affects the search rules
for the application initialization file. Also, if the -conffile command-line argument is used, then
only that application initialization file is tried.

Note: Several means are available to control loading of the system initialization file. It can be
enabled by the IRegistry::fWithNcbirc flag. It can be disabled if (1) it contains the
DONT USE NCBIRC entry in the NCBI section, (2) it contains syntax errors or no entries,
or (3) if the environment variable NCBI DONT USE NCBIRC is defined.

With the exceptions noted above, the following rules determine the search order for application
and system initialization files. Although application and system initialization files are not
typically found in the same place, the same search order rules apply to both (with the above
exceptions).

1 Ifthe environment variable NCBI _CONFIG_PATH is set, that will be the only path
searched for initialization files.

2 Otherwise, the search order includes the following directories in order:

a If the environment variable NCBI DONT_USE LOCAL CONFIG is not
defined then:

i The current working directory (".").
ii The user's home directory (if it can be established).
b The path in the environment variable NCBI (if it is defined).

¢ The standard system directory ("/etc" on Unix-like systems, and given by
the environment variable SYSTEMROOT on Windows).

d The directory containing the application, if known (this requires use of
CNcbiApplication).

Note: The search ends with the first file found.

The above rules determine the search order for directories, but there are also rules for
initialization file names:

For the application registry: When the initialization file name is not explicitly specified (e.g.
on the command line) then the implicit name will be formed by appending ".ini" to the

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 34

application name. When the application name contains extensions, multiple names may be
tried by sequentially stripping extensions off the application name. For example, if an
application name is a.b.c then the sequence of initialization file names tried is: a.b.c.ini, a.b.ini,
and finally a.ini.

On Unix-like systems, if an application dirl/app! is a symlink to dir2/app2, the directory/name
search order will be:

1 /appl.ini
$NCBL/appl.ini
~/appl.ini
dirl/app1.ini
dir2/appl.ini
Japp2.ini
$NCBI/app2.ini
~/app2.ini

o 9 SN U AW N

dirl/app2.ini
10 dir2/app2.ini

For the system registry: The name .ncbirc is tried on Unix-like systems and ncbi.ini is tried on
Windows. Note: NCBI in-house Linux systems have "/etc/.ncbirc" symlinked to "/opt/ncbi/
config/.ncbirc" so that applications running on production systems (or with NCBI unset) still
pick up standard configuration settings.

Fine-Tuning Registry Parameters Using IRegistry::EFlags

Note: This section deals with concepts not typically needed by most C++ Toolkit users. The
functionality of CNcbiRegistry is automatically and transparently provided when you use
CNcbiApplication. You probably won't need to read this section unless you're working with
an application that edits registry files or explicitly sets registry entry values.

Each CNcbiRegistry entry has a set of flags that control how it is handled, defined by this
enum:

enum EFlags {

fTransient = 0x1, ///< Transient -- not saved by default
fPersistent = 0x100, ///< Persistent -- saved when file is written
fOverride = 0x2, ///< Existing value can be overriden

fNoOverride = 0x200, ///< Cannot change existing value

fTruncate = 0x4, ///< Leading, trailing blanks can be truncated
fNoTruncate = 0x400, ///< Cannot truncate parameter value

fJustCore = 0x8, ///< Ignore auxiliary subregistries

fNotJustCore = 0x800, ///< Include auxiliary subregistries
fIgnoreErrors = 0x10, ///< Continue reading after parse errors
fInternalSpaces = 0x20, ///< Allow internal whitespace in names
fWithNcbirc = 0x40, ///< Include .ncbirc (used only by CNcbiRegistry)
fCountCleared = 0x80, ///< Let explicitly cleared entries stand

fSectionCase = 0x1000,///< Create with case-sensitive section names
fEntryCase = 0x2000,///< Create with case-sensitive entry names
fCorelayers = fTransient | fPersistent | fJustCore,

fAllLayers = fTransient | fPersistent | fNotJustCore,

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 3L 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 35
fCaseFlags = fSectionCase | fEntryCase
}i

typedef int TFlags; ///< Binary OR of "EFlags"

Some pairs of these flags are mutually exclusive and have a default if neither flag is given:

Flag Pair Default
fTransient / fPersistent fPersistent
fOverride / fNoOverride | fOverride
fJustCore / fNotJustCore | fJustCore

It is not necessary to use the fNoTruncate flag because it represents the default behavior - no
values are truncated unless fTruncate is used.

The flag fWithNcbirc can be passed to the CNcbiRegistry constructor, the
CNcbiRegistry::IncludeNcbircIfAllowed() method, or the
IRWRegistry::IncludeNcbircIfAllowed() method. If it is set then the system-wide registry is
used - see the search order section for details on the system-wide registry.

For example, the following code demonstrates that the bit-wise OR of fTruncate and
fNoOverride strips all leading and trailing blanks and does not override an existing value:

CNcbiRegistry reg;
CNcbiRegistry::TFlags flags = CNcbiRegistry::fNoOverride |
CNcbiRegistry::fTruncate;

reg.Set ("MySection", "MyName", " Not Overridden ", flags);

reg.Set ("MySection", "MyName", " Not Saved ", flags);

cout << "[MySection]MyName=" << reg.Get ("MySection", "MyName") << ".\n" <<
endl;

// outputs "[MySection]MyName=Not Overridden."

Main Methods of CNcbiRegistry

The CNcbiRegistry class constructor takes two arguments - an input stream to read the registry
from (usually a file), and an optional TFlags argument, where the latter can be used to specify
that all of the values should be stored as transient rather than in the default mode, which is
persistent:

CNcbiRegistry (CNcbiIstream& is, TFlags flags = 0);

Once the registry has been initialized by its constructor, it is also possible to load additional
parameters from other file(s) using the Read() method:

void Read (CNcbilIstream& is, TFlags flags = 0);

Valid flags for the Read() method include eTransient and eNoOverride. The default is for all
values to be read in as persistent, with the capability of overriding any previously loaded value
associated with the same name. Either or both of these defaults can be modified by specifying
eTransient, eNoOverride, or (eTransient | eNoOverride) as the flags argument in the above
expression.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 36

The Write() method takes as its sole argument, a destination stream to which only the persistent
configuration parameters will be written.

bool Write (CNcbiOstream& os) const;
The configuration parameter values can also be set directly inside your application, using:

bool Set (const string& section, const string& name,

const string& value, TFlags flags = 0);

Here, valid flag values include ePersistent, eNoOverride, eTruncate, or any logical combination
of these. If eNoOverride is set and there is a previously defined value for this parameter, then
the value is not reset, and the method returns false.

The Get() method first searches the set of transient parameters for a parameter named name,
in section section, and if this fails, continues by searching the set of persistent parameters.
However, if the ePersistent flag is used, then only the set of persistent parameters will be
searched. On success, Get() returns the stored value. On failure, the empty string is returned.

const string& Get (const string& section, const string& name,

TFlags flags = 0) const;

Additional Registry Methods

Four additional note-worthy methods defined in the CNcbiRegistry interface are:

bool Empty(void) const;
void Clear (void);
void EnumerateSections (list<string>*sections) const;

void EnumerateEntries (const string& section, list<string>* entries) const;

Empty() returns true if the registry is empty. Clear() empties out the registry, discarding all
stored parameters. EnumerateSections() writes all registry section names to the list of strings
parameter named "sections". EnumerateEntries() writes the list of parameter names in section
to the list of strings parameter named "entries".

Portable Stream Wrappers

Because of differences in the C++ standard stream implementations between different
compilers and platforms, the file ncbistre.hpp contains portable aliases for the standard classes.
To provide portability between the supported platforms, it is recommended the definitions in
ncbistre.hpp be used.

The ncbistre.hpp defines wrappers for many of the standard stream classes and contains
conditional compilation statements triggered by macros to include portable definitions. For
example, not all compilers support the newer '#include <iostream>' form. In this case, the older
'#include <iostream.h>' is used based on whether the macro NCBI USE OLD IOSTREAM
is defined.

Instead of using the iostream, istream or ostream, you should use the portable CNcbilostream,

CNcbilstream and CNcbiOstream. Similarly, instead of using the standard cin, cout, cerr you
can use the more portable NcbiCin, NcbiCout, and NcbiCerr.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 37

The ncbistre.hpp also defines functions that handle platform-specific end of line reads. For
example, Endl() represents platform specific end of line, and NcbiGetline() reads from a
specified input stream to a string, and NcbiGetlineEOL() reads from a specified input stream
to a string taking into account platform specific end of line.

Working with Diagnostic Streams (*)

This section provides reference information on the use of the diagnostic stream classes. For an
overview of the diagnostic stream concepts refer to the introductory chapter.

The CNcbiDiag class implements the functionality of an output stream enhanced with error
posting mechanisms similar to those found in the NCBI C Toolkit. A CNcbiDiag object has
the look and feel of an output stream; its member functions and friends include output operators
and format manipulators. A CNcbiDiag object is not itself a stream, but serves as an interface
to a stream which allows multiple threads to write to the same output. Each instance of
CNcbiDiag includes the following private data members:

+ a buffer to store (a single) message text
* aseverity level
« aset of post flags

Limiting each instance of CNcbiDiag to the storage and handling of a single message ensures
that multiple threads writing to the same stream will not have interleaving message texts.

The following topics are discussed in this section:

* Where Diagnostic Messages Go

« Setting Diagnostic Severity Levels

« Diagnostic Messages Filtering
+ Log File Format
— The Old Post Format
— The New Post Format

— Controlling the Appearance of Diagnostic Messages using Post Flags
+ Defining the Output Stream
* Tee Output to STDERR
* The Message Buffer
* Request Exit Status Codes
— Standard (HTTP-like) status codes
— NCBI-specific status codes

« Error codes and their Descriptions

+ Defining Custom Handlers using CDiagHandler
* The ERR_POST and LOG_POST Macros

+ The TRACE macro

» Stack Traces

— Printing a Stack Trace

— Obtaining a Stack Trace for Exceptions

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiDiag.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 38

Where Diagnostic Messages Go

The following decision tree describes how the destination for diagnostics messages is
determined.

1 Before the application is constructed (before AppMain() is called), everything goes
to:

1 (Unix-like systems only) /log/fallback/UNKNOWN. {log|err|trace} -- if
available

2 STDERR -- otherwise

2 When the application is ready, and its name is known, but before the configuration
file is loaded:

1 If AppMain() is passed flags eDS Default or eDS_ToStdlog, then the
diagnostics goes:

1 (Unix-like systems only) if /log is present:

1 if the application is described in /etc/toolkitrc -- to /log/
<token>/appname. {log|err|trace}

2 else if environment variable $SERVER PORT is set --
to /log/SSERVER PORT/appname. {log|err|trace}

3 else (or if failed to switch to one of the above two
locations) -- to /log/srv/appname. {log|err|trace}

4 or, if failed to switch to that -- to /log/fallback/appname.
{ loglerr|trace}

2 else (or if failed to switch to any of the /log location):

1 eDS ToStdlog -- to <current_working_dir>/appname.
{ loglerr|trace} (and, if cannot, then continues to go to
STDERR)

2 eDS_Default -- continues to go to STDERR

2 If AppMain() is passed flags other than eDS_Default oreDS ToStdlog, then
the diagnostics goes to:

1 eDS ToStdout -- standard output stream

2 eDS_ToStderr -- standard error stream

3 eDS_ToMemory -- the application memory

4 eDS Disable -- nowhere

5 eDS_User -- wherever it went before the AppMain() call
6 eDS ToSyslog -- system log daemon

3 After the configuration file is loaded, and if it has an alternative location for the log
files, then switch to logging to that location. See the list of logfile-related
configuration parameters.

The boolean TryRootLogFirst argument in the [LOG] section of the application's config file
changes the order of locations to be tested. If TryRootLogFirst is set, the application will try
to open the log file under /log first. Only if this fails, then the location specified in the config
file will be used.

Note:

« Ifthe logging destination is switched, then a message containing both the old and new
locations is logged to both locations.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/books/n/toolkit/ch_libconfig#ch_libconfig.libconfig_logfile

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 39

+ Before the application configuration is loaded, a copy of all diagnostics is saved in
memory. If the log destination is changed by the application configuration, then the
saved diagnostics are dumped to the final log destination.

Setting Diagnostic Severity Levels

Each diagnostic message has its own severity level (EDiagSev), which is compared to a global
severity threshold to determine whether or not its message should be posted. Six levels of
severity are defined by the EDiagSev enumeration:

/// Severity level for the posted diagnostics.
enum EDiagSev {

eDiag Info = 0, ///< Informational message

eDiag Warning, ///< Warning message

eDiag Error, ///< Error message

eDiag Critical, ///< Critical error message

eDiag Fatal, ///< Fatal error -- guarantees exit (or abort)
eDiag Trace, ///< Trace message

// Limits

eDiagSevMin = eDiag Info, ///< Verbosity level for min. severity
eDiagSevMax = eDiag Trace ///< Verbosity level for max. severity

bi

The default is to post only those messages whose severity level exceeds the eDiag Warning
level (i.e. eDiag_Error, eDiag_Critical, and eDiag_Fatal). The global severity threshold for
posting messages can be reset using SetDiagPostLevel (EDiagSev postSev). A parallel
function, SetDiagDieLevel (EDiagSev dieSev), defines the severity level at which execution
will abort.

Tracing is considered to be a special, debug-oriented feature, and therefore messages with
severity level eDiag_Trace are not affected by these global post/die levels. Instead,
SetDiagTrace (EDiagTrace enable, EDiagTrace default) is used to turn tracing on or off. By
default, the tracing is off - unless you assign the environment variable DIAG_TRACE to an
arbitrary non-empty string or, alternatively, define a DIAG_TRACE entry in the [DEBUG]
section of your registry file.

The severity level can be set directly in POST and TRACE statements, using the severity level
manipulators including Info, Warning, Error, Critical, Fatal, and Trace, for example:

ERR_POST X (1, Critical << "Something quite bad has happened.");

Diagnostic Messages Filtering

Diagnostic messages from the CNcbiDiag and CException classes can be filtered by the source
file path; or by the module, class, or function name. Messages from the CNcbiDiag class can
also be filtered by error code. If a CException object is created by chaining to a previous
exception, then all exceptions in the chain will be checked against the filter and the exception
will pass if any exception in the chain passes (even if one of them is suppressed by a negative
condition). The filter can be set by the TRACE_FILTER or POST FILTER entry in the [DIAG]
section of the registry file or during runtime through SetDiagFilter(). Messages with a severity
level of eDiag_Fatal are not filtered; messages with a severity level of eDiag_Trace are filtered
by TRACE FILTER; and all other messages are filtered by POST FILTER. Filter strings
contain filtering conditions separated by a space. An empty filter string means that all messages
will appear in the log unfiltered. Filtering conditions are processed from left to right until a

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagSev
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagDieLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagFilter

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 40

condition that matches the message is found. If the message does not match any of the
conditions, then the message will be filtered out. Filtering conditions in the string may be
preceded by an exclamation mark, which reverses the behavior (so if a message matches the
condition it will be suppressed). See Table 4 for filtering condition samples and syntax.

For example:

* To log diagnostic messages from source files located in src/corelib with error codes
from 101 to 106 and any subcode, use the following filter: “/corelib (101-106.)”.

* To exclude log messages from sources in src/serial and src/dbapi, use this filter: !/
serial !/dbapi”.

* To log messages from sources in src/serial excluding those with error code 802 and
subcodes 4 and 10 through 12, and to exclude messages from sources in src/dbapi/
driver, use the following filter: “/serial !(802.4,10-12) !/dbapi/driver”.

Log File Format

The format of the log file can be customized. One of the most basic choices is between the
"old post format" and the "new post format". The old format essentially posts arbitrary strings
whereas the new format adds many standard fields, and structures the messages so they can be
automatically indexed for rapid searching and/or error statistics.

The old format is used by default. To use the new format:

int main(int argc, const char* argvl[])

{
GetDiagContext () .SetOldPostFormat (false); // use the new format

return CMyApp () .AppMain(argc, argv);
}

This function should be called before the application's constructor for the setting to be used
from the very beginning.

See also:

+ the Diagnostic Trace section in the library configuration chapter for details on selecting
the format using the environment or registry; and

+ the ERR_POST and LOG_POST Macros section for more details on creating the log
messages.

The Old Post Format

The old format for log messages is simply a message - prefixed with the severity level if it is
an error message:

[<severity>:]<Message>

The New Post Format

The new format for the application access log and error postings is:
<Common Prefix> <Event:13> <Message>

The common prefix has the format:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig

Page 41

<pid:5>/<tid:3>/<rid:4>/<state:2> <guid:16> <psn:4>/<tsn:4> <time> <host:15>

<client:15> <session:24> <application>

Note: Width and padding of standard fields

+ To make a good visual alignment, most numeric values are printed zero-padded to
some minimal width. For example, <pid:5> means that number 123 gets printed as
"00123", and number 1234567 gets printed as "1234567".

* The non-numeric fields for which the width is specified (e.g. <severity:10>) are padded
with spaces and are adjusted to the left.

300g IY[001 ++D 19ON 8UL

The fields are:
Field Description Type or format
pid Process ID Uint8 (decimal)
tid Thread ID Uint8 (decimal)
rid Request ID (e.g. iteration number for a CGI) int (decimal)
state Application state code: { AB|AE |RB|R|RE } string
guid Globally unique process ID Int8 (hexadecimal)
psn Serial number of the posting within the process int (decimal)
tsn Serial number of the posting within the thread int (decimal)
time Astronomical date and time at which the message was posted | YYYY-MM-DDThh:mm:ss.sss
host Name of the host where the process runs string (UNK_HOST if unknown)
client Client IP address valid IP address string (UNK_CLIENT if unknown)
session Session ID string (UNK_SESSION if unknown)
application | Name of the application (see note below) string (UNK_APP if unknown)

300g Y001 ++D 190N 8UL

Note: The application name is set to the executable name (without path and extension) by
default. Sometimes however the executable's name can be too generic (like "summary" or
"fetch"). To change it use CNcbiApplication::SetProgramDisplayName() function. Better yet,
just rename the executable itself. It's a good practice to prefix the application names with
something project-specific (like "pc_summary" for PubChem or "efetch" for E-Ultils).

The application state codes are:

Code | Meaning

AB application is starting

A application is running (outside of any request)

AE application is exiting

RB request is starting

R request is being processed

RE request is exiting

300g Y001 ++D 190N 83Ul

The normal state transitions are:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=x_CreateUID

300g ¥Y[001 ++D 190N 8UL 300g I4[001 ++D 190N 8UL

300g Y001 ++D 190N 8yl

Page 42

« AB->A->AE
«+ AB->A->{RB->R->RE}->A->.. ->{RB->R->RE}->A->AE

The access log events and messages are:

Log Message

Event / Description

start Start of application (see note below)
stop <exit_code> <timespan> [SIG=<exit_signal>] End of application
where: exit code Application exit code (zero if not set)
timespan Application execution time
exit_signal | Signal number, if application exited due to a signal
extra Arbitrary information (see note below)

request-start

Start of request (see note below)

request-stop <status> <timespan> <bytes_rd> End of request

<bytes_wr>

where: status Exit status of the request (zero if not set)
timespan Request execution time (zero if not set)
bytes rd Input data read during the request execution, in bytes (zero if not set)
bytes_wr Output data written during the request execution, in bytes (zero if not set)

Note: Make your log data more parsable!

In many cases the logs are collected and stored in the database for analysis. The NCBI log
system now implements a special logic to parse (and then index) the user data provided in the
request-start and extra log lines. It is therefore recommended that this data be presented in the
following format (which is understood by the parser):

tagl=valuel&tag2=value2&tag3=value3...

where all tag and value fields are URL-encoded.

The format for error and trace messages is:

<severity:10>: <module>(<err code>.<err subcode> | <err text>) "<file>", line
<line>: <class>::<func> --- <prefixes> <user message> <err code message>

<err code explanation>

The error and trace message fields are:

Field Description
severity Message severity = { Trace | Info | Warning | Error | Critical | Fatal | Message[T|I|W[E|C|F] }
module Module where the post originates from (in most cases the module corresponds to a single library)

err_code, err_subcode

Numeric error code and subcode

err_text

If the error has no numeric code, sometimes it can be represented as text

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 43

file, line File name and line number where the posting occured
class, func Class and/or function name where the posting occured: {Class:: | Class::Function() | ::Function()}
prefixes User-defined prefixes for the message

user_message

The message itself

err_code message

Short error code description

err_code_explanation

Detailed explanation of the error code

Example application events (line continuation characters added for clarity):

03960/000/0000/AB 2C2DOF7851AB7E40 0005/0005 2006-09-27T13:41:56.034 \
widget3 UNK_CLIENT UNK_SESSION cgi sample.cgi \

start

03960/000/0000/RB 2C2DOF7851AB7E40 0008/0008 2006-09-27T13:41:56.456 \
widget3 192.168.0.2 2C2DOF7851AB7E40 0000SID cgi_sample.cgi \
request-start

03960/000/0000/RE 2C2DOF7851AB7E40 0010/0010 2006-09-27T13:41:56.567 \
widget3 192.168.0.2 2C2DOF7851AB7E40 0000SID cgi_ sample.cgi \
request-stop 200 0.105005566

03960/000/0000/AE 2C2DOF7851AB7E40 0012/0012 2006-09-27T13:41:56.789 \
widget3 UNK_CLIENT UNK_SESSION cgi sample.cgi \

stop 0 0.149036509

Example diagnostic message:

03960/000/0000/AB 2C2DOF7851AB7E40 0006/0006 2006-09-27T13:41:56.055 \
widget3 UNK_CLIENT UNK_SESSION cgi sample.cgi \

Warning: CGI --- CCgiSampleApplication::Init ()

03960/000/0000/R 2C2DOF7851AB7E40 0009/0009 2006-09-27T13:41:56.066 \
widget3 192.168.0.2 2C2DOF7851AB7E40 0000SID cgi_ sample.cgi \

Warning: CGI --- CCgiSampleApplication::ProcessRequest ()
15176/003/0006/R 2A763B485350C030 0098/0008 2006-10-17T12:59:47.333 \
widget3 192.168.0.2 2C2DOF7851AB7E40 0000SID my app \

Error: TEST "/home/user/c++/src/corelib/test/my app.cpp", \

line 81: CMyApp::Thread Run() --- Message from thread 3, for request 6

Controlling the Appearance of Diagnostic Messages using Post Flags

The post flags define additional information that will be inserted into the output messages and
appear along with the message body. The standard format of a message is:

"<file>", line <line>: <severity>: (<err code>.<err subcode>)
[<prefixl>::<prefix2>::<prefixN>] <message>\n
<err code message>\n

<err code explanation>

where the presence of each field in the output is controlled by the post flags EDiagPostFlag
associated with the particular diagnostic message. The post flags are:

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagPostFlag

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

enum EDiagPostFlag {

eDPF File = 0x1l, ///< Set by default #if DEBUG; else not set
eDPF LongFilename = 0x2, ///< Set by default #if DEBUG; else not set
eDPF Line = 0Ox4, ///< Set by default #if DEBUG; else not set
eDPF Prefix = 0x8, ///< Set by default (always)
eDPF Severity = 0x10, ///< Set by default (always)
eDPF ErrorID = 0x20, ///< Module, error code and subcode
eDPF DateTime = 0x80, ///< Include date and time
eDPF ErrCodeMessage = 0x100, ///< Set by default (always)
eDPF _ErrCodeExplanation = 0x200, ///< Set by default (always)
eDPF ErrCodeUseSeverity = 0x400, ///< Set by default (always)
eDPF Location = 0x800, ///< Include class and function
///< if any, not set by default

eDPF _PID = 0x1000, ///< Process ID

eDPF _TID = 0x2000, ///< Thread ID

eDPF SerialNo = 0x4000, ///< Serial # of the post, process-wide
eDPF SerialNo Thread = 0x8000, ///< Serial # of the post, in the thread
eDPF RequestId = 0x10000, ///< fcgi iteration number or request ID
eDPF Iteration = 0x10000, ///< @deprecated
eDPF_UID = 0x20000, ///< UID of the log

eDPF ErrCode = eDPF ErrorID, ///< @deprecated
eDPF _ErrSubCode = eDPF ErrorID, ///< @deprecated
/// All flags (except for the "unusual" ones!)
eDPF _All = OxFFFFF,

/// Default flags to use when tracing.
#if defined (NCBI_THREADS)

eDPF Trace = O0xF81F,
#else

eDPF Trace = 0x581F,
#endif

/// Print the posted message only; without severity, location, prefix,
eDPF Log = 0x0,

// "Unusual" flags -- not included in "eDPF All"

eDPF PreMergelLines = 0x100000, ///< Remove EOLs before calling handler
eDPF MergeLines = 0x200000, ///< Ask diag.handlers to remove EOLs
eDPF_OmitInfoSev = 0x400000, ///< No sev. indication if eDiag_Info
eDPF OmitSeparator = 0x800000, ///< No '---' separator before message

eDPF AppLog = 0x1000000, ///< Post message to application log
eDPF IsMessage = 0x2000000, ///< Print "Message" severity name.

/// Hint for the current handler to make message output as atomic as
/// possible (e.g. for stream and file handlers).

eDPF_AtomicWrite = 0x4000000,

/// Use global default flags (merge with).
/// @sa SetDiagPostFlag(), UnsetDiagPostFlag(), IsSetDiagPostFlag()

Portability, Core Functionality and Application Framework

Page 44

etc.

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 45
eDPF_Default = 0x10000000,

/// Important bits which should be taken from the globally set flags
/// even if a user attempts to override (or forgets to set) them

/// when calling CNcbiDiag() .

eDPF ImportantFlagsMask = eDPF PreMergeLines |

eDPF MergeLines |

eDPF OmitInfoSev |

eDPF OmitSeparator |

eDPF_AtomicWrite,

/// Use flags provided by user as-is, do not allow CNcbiDiag to replace
/// "important" flags by the globally set ones.

eDPF _UseExactUserFlags = 0x20000000

bi

The default message format displays only the severity level and the message body. This can
be overridden inside the constructor for a specific message, or globally, using SetDiagPostFlag

() on a selected flag. For example:

SetDiagPostFlag (eDPF DateTime); // set flag globally

Defining the Output Stream

The logging framework uses a global output stream. The default is to post messages to CERR
ouput stream, but the stream destination can be reset at any time using:

SetDiagStream(CNcbiOstream* os, bool quick flush,

FDiagCleanup cleanup, void* cleanup data)

This function can be called numerous times, thus allowing different sections of the executable
to write to different files. At any given time however, all messages will be associated with the
same global output stream. Because the messages are completely buffered, each message will
appear on whatever stream is active at the time the message actually completes.

And, of course, you can provide (using SetDiagHandler) your own message posting handler
CDiagHandler, which does not necessarily write the messages to a standard C++ output stream.
To preserve compatibility with old code, SetDiagHandler also continues to accept raw callback
functions of type FDiagHandler.

If the output stream is a file, you can optionally split the output into three streams, each written
to a separate file:

» Application log - standard events (start, stop, request-start, request-stop and user
defined extra events).

« Error log - all messages with severity Warning and above.
+ Trace log - messages having severity Info and Trace messages.

All three log files have the same name but different extensions: .log, .err and .trace.

To turn on the log file splitting, call (before the log file initialization):

int main(int argc, const char* argvl[])

{

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 46
SetSplitLogFile (true);

return CMyApp () .AppMain(argc, argv);
}

This function should be called before the application's constructor for the setting to be used
from the very beginning.

Tee Output to STDERR

Sometimes it is helpful to generate human-readable diagnostics on the console in addition to
storing detailed diagnostics in the machine-parsable log files. In these cases, it is likely that
both the message severity required to trigger output and the output format should be different
for the log file and the console. For example:

Destination | Severity | Format

Log File Error new (machine-parsable)

Console Warning | old (human-readable)
To set up this sort of tee, set these configuration parameters (see the library configuration
chapter for details):

Configuration Parameter Example Value | Notes

DIAG_TEE_TO_STDERR True This turns on the tee.

DIAG OLD POST FORMAT | False This makes the log file use the new format.

DIAG_POST_LEVEL Error This sets the minimum severity required to post to the log file.

DIAG_TEE_MIN_SEVERITY | Warning This sets the minimum severity required to post to the console.

Alternatively, you can use the Console manipulator to indicate that output should go to the
console (in human-readable format):

ERR_POST_X (1, Console << "My ERR_POST message.");
Note: Output sent to the console using this manipulator will also go to the log file if the message

severity at least meets the severity threshold for the log file. The effect of the manipulator lasts
until the next flush, which typically occurs after each post.

The Message Buffer

Diagnostic messages (i.e. instances of the CNcbiDiag class) have a buffer that is initialized
when the message is first instantiated. Additional information can then be appended to the
message using the overloaded stream operator <<. Messages can then be terminated explicitly
using CNcbiDiag's stream manipulator Endm, or implicitly, when the CNcbiDiag object exits
scope.

Implicit message termination also occurs as a side effect of applying one of the severity level
manipulators. Whenever the severity level is changed, CNcbiDiag also automatically executes
the following two manipulators:

* Endm -- the message is complete and the message buffer will be flushed

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/books/n/toolkit/ch_libconfig#ch_libconfig.libconfig_diag
http://www.ncbi.nlm.nih.gov/books/n/toolkit/ch_libconfig#ch_libconfig.libconfig_diag

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 47

* Reset -- empty the contents of the current message buffer

When the message controlled by an instance of CNcbiDiag is complete, CNcbiDiag calls a
global callback function (of type FDiagHandler) and passes the message (along with its severity
level) as the function arguments. The default callback function posts errors to the currently
designated output stream, with the action (continue or abort) determined by the severity level
of the message.

Request Exit Status Codes

This section describes the possible values of the request exit codes used in NCBI. They appear
in the application access log as:

request-stop <status>

Request exit status codes are either standard or NCBI-specific.

Standard (HTTP-like) status codes

The NCBI request exit codes must conform to the HTTP status codes:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

NCBI-specific status codes

If the situation cannot be described using one of the standard (HTTP) status codes, then an
NCBI specific code should be used.

The NCBI-specific status codes must be different from the standard (HTTP) status codes. At
the same time these codes better follow at least the range requirements of the standard (HTTP)
status codes, that is they better belong to one of the following ranges:

Range Description
120 - 199 | Informational/provisional response
220-299 | Success
320-399 | Redirection
420 —499 | Bad request (client error)
520-599 | Server Error
So far we have the following NCBI specific status codes:
Value Description
0 Unknown error
555 NCBI Network Dispatcher refused a request from and outside user which is in its "abusers list"
1000 + errno | Unclassifiable server error when only errno is known (NOTE: the value of errno can be different on different platforms!)

Error codes and their Descriptions

Error codes and subcodes are posted to an output stream only if applicable post flags were set.
In addition to error codes, the logging framework can also post text explanations. The
CDiagErrCodelnfo class is used to find the error message that corresponds to a given error

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagErrCodeInfo.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 48

code/subcode. Such descriptions could be specified directly in the program code or placed in
a separate message file. It is even possible to use several such files simultaneously.

CDiagErrCodelnfo can also read error descriptions from any input stream(s), not necessarily
files.

Preparing an Error Message File

The error message file contains plain ASCII text data. We would suggest using the .msg
extension, but this is not mandatory. For example, the message file for an application named
SomeApp might be called SomeApp.msg.

The message file must contain a line with the keyword MODULE in it, followed by the name
of the module (in our example SomeApp). This line must be placed in the beginning of the
file, before any other declarations. Lines with symbol # in the first position are treated as
comments and ignored.

Here is an example of the message file:

This is a message file for application "SomeApp"
MODULE SomeApp

- Code 1 ------

$$ NoMemory, 1, Fatal : Memory allocation error
- Code 2 ------

$$ File, 2, Critical : File error

$” Open, 1 : Error open a specified file

This often indicates that the file simply does not exist.
Or, it may exist but you do not have permission to access
the file in the requested mode.

$”~ Read, 2, Error : Error read file

Not sure what would cause this...

$”~ Write, 3, Critical

This may indicate that the filesystem is full.

- Code 3 —------

$$ Math, 3

$~ Param, 20

$~ Range, 3

Lines beginning with $$ define a top-level error code. Similarly, lines beginning with $” define
subcodes of the top-level error code. In the above example Open is a subcode of File top-level
error, which means the error with code 2 and subcode 1.

Both types of lines have similar structure:

$$/$" <mnemonic name>, <code> [, <severity>] [: <message>] \n

[<explanation>]

where

* mnemonic_name (required) Internal name of the error code/subcode. This is used as
a part of an error name in a program code - so, it should also be a correct C/C++
identifier.

+ code (required) Integer identifier of the error.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 49

« severity (optional) This may be supplied to specify the severity level of the error. It
may be specified as a severity level string (valid values are Info, Warning, Error,
Critical, Fatal, Trace) or as an integer in the range from 0 (eDiag_Info) to 5
(eDiag Trace). While integer values are acceptable, string values are more readable.
If the severity level was not specified or could not be recognized, it is ignored, or
inherited from a higher level (the severity of a subcode becomes the same as the severity
of a top-level error code, which contains this subcode). As long as diagnostic
eDPF_ErrCodeUseSeverity flag is set, the severity level specified in the message file
overrides the one specified in a program, which allows for runtime customization. In
the above example, Critical severity level will be used for all File errors, except Read
subcode, which would have Error severity level.

« message (optional) Short description of the error. It must be a single-line message. As
long as diagnostic eDPF_ErrCodeMessage flag is set, this message is posted as a part
of the diagnostic output.

+ explanation (optional) Following a top-level error code or a subcode definition string,
it may be one or several lines of an explanation text. Its purpose is to provide additional
information, which could be more detailed description of the error, or possible reasons
of the problem. This text is posted in a diagnostic channel only if
eDPF_ErrCodeExplanaton flag was set.

Error message files can be automatically read by setting a configuration parameter. You can
either define the MessageFile entry in the DEBUG section of the application registry, or set
the environment variable NCBI_CONFIG__ DEBUG__ MessageFile (note the double-
underscores and character case).

Defining Custom Handlers using CDiagHandler

The user can install his own handler (of type CDiagHandler,) using SetDiagHandler().
CDiagHandler is a simple abstract class:

class CDiagHandler

{
public:

/// Destructor.

virtual ~CDiagHandler (void) {}

/// Post message to handler.

virtual void Post (const SDiagMessage& mess) = 0;

bi

where SDiagMessage is a simple struct defined in ncbidiag.hpp whose data members' values
are obtained from the CNcbiDiag object. The transfer of data values occurs at the time that
Post is invoked. See also the section on Message posting for a more technical discussion.

The ERR_POST and LOG_POST Macros

A family of ERR_POST* macros and a corresponding family of LOG_POST* macros are
available for routine error posting. Each family has a set of macros:

+ {ERR|LOG} POST(msg) — for posting a simple message. Note: these macros are
deprecated. Use {ERR|LOG} POST_ X instead (except for tests) for more flexible
error statistics and logging.

+ {ERR|LOG} POST_X(subcode, msg) — for posting a default error code, a given
subcode, and a message. Each call to {ERR|LOG} POST_X must use a different
subcode for proper error statistics and logging. The default error code is selected by

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SDiagMessage
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 50

NCBI_USE ERRCODE X. The error code is selected from those defined by
NCBI_DEFINE ERRCODE X in the appropriate header file, e.g. include/corelib/
error_codes.h.

« {ERR|LOG} POST_EX(code, subcode, msg)— for posting a given error code, a given
error subcode, and a message. This macro should only be used if you have to use a
variable for the subcode, or to specify an error code other than the current default. In
all other cases (except for tests), use {ERR|[LOG} POST_ X for more flexible error
statistics and logging.

+ {ERR|LOG} POST XX(code, subcode, msg) — these macros must be used in place
of {ERR|LOG} POST X within header files so that the same error code will be used
for header-defined code, regardless of the error codes that including files may use.

The LOG_POST _* macros just write a string to the log file, and are useful if a human-readable
log file is desired. The output from the ERR_POST * macros is not easily read by humans,
but facilitates automatic indexing for searching and/or error statistics. There are multiple flags
to control the appearance of the message generated by the ERR_POST_* macros.

The LOG_POST_ *and ERR_POST_* macros implicitly create a temporary CNcbiDiag object
and put the passed "message" into it with a default severity of eDiag_Error. A severity level
manipulator can be applied if desired, to modify the message's severity level. For example:

long 111 = 345;
ERR_POST X (1, "My ERR POST message, print long: " << 111);

would write to the diagnostic stream something like:
Error: (1501.1) My ERR POST message, print long: 345
while:

double ddd = 123.345;
ERR_POST X (1, Warning << "My ERR POST message, print double: " << ddd);

would write to the diagnostic stream something like:
Warning: (1501.1) My ERR POST message, print double: 123.345

See the Log File Format section for more information on controlling the format of diagnostics
messages.

Note: Most of the above macros make use of the macro definition NCBI USE _ERRCODE_X.
This definition must be present in your source code, and must be defined in terms of an existing
error code name. By convention, error code names are defined in header file named
error_codes.hpp in the relevant directory, for example include/corelib/error codes.hpp.

To set up new error codes, pick appropriate names and error code numbers that don't match
existing values, and decide how many subcodes you'll need for each error code. For example,
the following sets up three error codes to deal with different categories of errors within a library,
and specifies the number of subcodes for each category:

// Note: The following should be in src/app/my prog/error codes.hpp.

BEGIN NCBI SCOPE

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 51

NCBI DEFINE ERRCODE X (MyLib Catl, 1501, 5);
NCBI DEFINE ERRCODE X (MyLib Cat2, 1502, 6);
NCBI DEFINE ERRCODE X (MyLib Cat3, 1503, 1);

// where:

// MyLib_* -- the error code names

// 1501, etc -- the error code numbers, typically starting at N*100+1
// 5, etc -- how many subcodes you need for the given error code

END NCBT_SCOPE
Now you can use the error code in your library's implementation:
// The following should be in your source files.

// include the relevant error codes header, for example:

#include <include/corelib/error codes.hpp>

#define NCBI_USE_ERRCODE_X MyLib Catl // sets the default error code for this
file

ERR POST X (5, Critical << "Your message here."); // uses the default error

code

Generally, the default error code and the ERR_POST X macro should be used. Ifit is necessary
to use a non-default error code, that error code and the appropriate subcode may be used with
the ErrCode manipulator in the ERR_POST macro. For example:

// use a non-default error code (1501 in this example) and subcode 3

ERR_POST (ErrCode (1501, 3) << "My error message.");

The _TRACE macro

The TRACE(message) macro is a debugging tool that allows the user to insert trace statements
that will only be posted if the code was compiled in debug mode, and provided that the tracing
has been turned on. If DIAG_TRACE is defined as an environment variable, or as an entry in
the [DEBUG] section of your configuration file (*.ini), the initial state of tracing is on. By
default, if no such variable or registry entry is defined, tracing is off. SetDiagTrace (EDiagTrace
enable, EDiagTrace default) is used to turn tracing on/off.

Just like ERR_POST, the TRACE macro takes a message, and the message will be posted
only if tracing has been enabled. For example:

SetDiagTrace (eDT Disable);

_TRACE ("Testing the TRACE macro");
SetDiagTrace (eDT_Enable);

_TRACE ("Testing the TRACE macro AGAIN");

Here, only the second trace message will be posted, as tracing is disabled when the first
_TRACE() macro call is executed.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ErrCode
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 52

Stack Traces

CStackTrace objects have special formatting: a "Stack trace:" line is added before the stack
trace and standard indentation is used. This formatting is also used when printing the stack
trace for exceptions.

Using stack traces with diagnostics is discussed in the following topics:

* Printing a Stack Trace

+ Obtaining a Stack Trace for Exceptions

Printing a Stack Trace

A stack trace can be saved simply by creating a CStackTrace object. Then the object can be
posted in an error message, for example:

ERR _POST X (1, Error << "Your message here." << CStackTrace());
An example of a stack trace output on Linux:

Error: (1501.1) Your message here.

Stack trace:

./my prog ?222:0 ncbi::CStackTraceImpl::CStackTraceImpl () offset=0x5D

./my_prog ?222:0 ncbi::CStackTrace::CStackTrace (std::string const&)
offset=0x28

./my _prog ??2?2:0 CMyProg::Run() offset=0xAF3

./my _prog ?222:0 ncbi::CNcbiApplication::x TryMain (ncbi::EAppMyProgStream,
char const*, int*, bool*) offset=0x6C8

./my _prog ?2?:0 ncbi::CNcbiApplication::AppMain(int, char const* const*,
char const* const*, ncbi::EAppMyProgStream, char const*, std::string const&)
offset=0x11BA

./my _prog ???:0 main offset=0x60

/1ib64/tls/libc.so.6 22?2:0 libc start main offset=0xEA

./my _prog ???:0 std:: throw logic error(char const*) offset=0x62

Obtaining a Stack Trace for Exceptions

The stack trace can be saved by CException and derived classes automatically if the exception's
severity is equal to or above the level set in the EXCEPTION STACK TRACE LEVEL

environment variable or configuration parameter. The default level is eDiag_Critical, so that
most exceptions do not save the stack trace (the default exception's severity is eDiag_Error).

When printing an exception, the diagnostics code checks if a stack trace is available and if so,
automatically prints the stack trace along with the exception.

An example of an exception with a stack trace on Linux:

Error: (106.16) Application's execution failed
NCBI C++ Exception:

Error: (CMyException::eMyErrorXyz) Your message here.

Stack trace:

./my prog ???:0 ncbi::CStackTracelImpl::CStackTracelImpl () offset=0x5D
./my _prog ???:0 ncbi::CStackTrace::CStackTrace (std::string consté&)
offset=0x28

./my prog ???:0 ncbi::CException::x GetStackTrace() offset=0x86

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_libconfig

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 53

./my prog ???:0 ncbi::CException::x Init (ncbi::CTestCompileInfo consts,
std::string consté&, ncbi::CException const*, ncbi::ETestSev) offset=0xE9

./my prog ?2?:0 ncbi::CException::CException(ncbi::CTestCompileInfo constg,
ncbi::CException const*, ncbi::CException::EErrCode, std::string constg,
ncbi::ETestSev) offset=0x119

./my prog ??2?:0 CMyException::CMyException (ncbi::CTestCompileInfo consts,
ncbi::CException const*, CMyException::EErrCode, std::string constg,
ncbi::ETestSev) offset=0x43

./my prog ???:0 CMyTestTest::Run() offset=0xD3A

./my_prog 222:0 ncbi::CNcbiApplication::x TryMain (ncbi::EAppTestStream, char
const*, int*, bool*) offset=0x6C8

./my_prog ???:0 ncbi::CNcbiApplication::AppMain (int, char const* const¥,
char const* const*, ncbi::EAppTestStream, char const*, std::string consté&)
offset=0x11BA

./my _prog ???:0 main offset=0x60

/1ib64/tls/libc.so.6 222:0 _ libc_start _main offset=0xEA

./my_prog 22?:0 std::_ throw_logic_error (char const*) offset=0x62

Debug Macros

A number of debug macros such as_ TRACE, TROUBLE, ASSERT, VERIFY,
_DEBUG_ARG can be used when the DEBUG macro is defined.

These macros are part of CORELIB. However, they are discussed in a separate chapter on
Debugging, Exceptions, and Error Handling.

Handling Exceptions

The CORELIB defines an extended exception handling mechanism based on the C++
std::exception, but which considerably extends this mechanism to provide a backlog, history
of unfinished tasks, and more meaningful reporting on the exception itself.

While the extended exception handling mechanism is part of CORELIB, it is discussed in a
separate chapter on Debugging, Exceptions, and Error Handling.

Defining the Standard NCBI C++ types and their Limits

The following section provides a reference to the files and limit values used to in the C++
Toolkit to write portable code. An introduction to the scope of some of these portability
definitions is presented the introduction chapter.

The following topics are discussed in this section:

+ Headers Files containing Portability Definitions
+ Built-in Integral Types

+ Auxiliary Types

+ Fixed-size Integer Types

« The "Ncbi_BigScalar" Type

* Encouraged and Discouraged Types

Headers Files containing Portability Definitions
+ corelib/ncbitype.h -- definitions of NCBI fixed-size integer types

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_debug
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 54

+ corelib/ncbi_limits.h -- numeric limits for:
— NCBI fixed-size integer types
— built-in integer types
— Dbuilt-in floating-point types

« corelib/ncbi_limits.hpp -- temporary (and incomplete) replacement for the Standard C
++ Template Library's API

Built-in Integral Types

We encourage the use of standard C/C++ types shown in Table 5, and we state that the following
assumptions (no less, no more) on their sizes and limits will be valid for all supported platforms:

Auxiliary Types

Use type "bool" to represent boolean values. It accepts one of { false, true }.

Use type "size t" to represent a size of memory structure, e.g. obtained as a result of sizeof
operation.

Use type "SIZE_TYPE" to represent a size of standard C++ "string" - this is a portable
substitution for "std::string::size_type".

Fixed-size Integer Types
Sometimes it is necessary to use an integer type which:
« has a well-known fixed size(and lower/upper limits)

* Dbejust the same on all platforms(but maybe a byte/bit order, depending on the processor
architecture)

NCBI C++ standard headers provide the fixed-size integer types shown in Table 6:

In Table 7, the "kM* *" are constants of relevant fixed-size integer type. They are guaranteed
to be equal to the appropriate preprocessor constants from the old NCBI C headers
("INT*_M*"). Please also note that the mentioned "INT* M*" are not defined in the C++
headers - in order to discourage their use in the C++ code.

The "Ncbi_BigScalar" Type

NCBI C++ standard headers also define a special type "Ncbi_BigScalar". The only assumption
that can be made(and used in your code) is that "Ncbi_BigScalar" variable has a size which is
enough to hold any integral, floating-point or pointer variable like "Int8", or "double"("long
double"), or "void*". This type can be useful e.g. to hold a callback data of arbitrary
fundamental type; however, in general, the use of this type is discouraged.

Encouraged and Discouraged Types

For the sake of code portability and for better compatibility with the third-party and system
libraries, one should follow the following set of rules:

" on "non

« Use standard C/C++ integer types "char", "signed char", "unsigned char", "short",
"unsigned short", "int", "unsigned int" in any case where the assumptions made for
them in Table 5 are enough.

« Itis not recommended to use "long" type unless it is absolutely necessary (e.g. in the
lower-level or third-party code), and even if you have to, then try to localize the use
of "long" as much as possible.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.hpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 55

+ The same(as for "long") is for the fixed-size types enlisted in Table 6. If you have to
use these in your code, try to keep them inside your modules and avoid mixing them
with standard C/C++ types (as in assignments, function arg-by-value passing and in
arithmetic expressions) as much as possible.

« For the policy on other types see in sections ""Auxiliary types" and "Floating point
types".

Understanding Smart Pointers: the CObject and CRef Classes

This section provides reference information on the use of CRef and CObject classes. For an
overview of these classes refer to the introductory chapter.

The following is a list of topics discussed in this section:

« STL auto_ptrs
* The CRef Class
« The CObject Class

* The CObjectFor class: using smart pointers for standard types

* When to use CRefs and auto_ptrs
* CRef Pitfalls

STL auto_ptrs

C programmers are well-acquainted with the advantages and pitfalls of using pointers. As is
often the case, the good news is also the bad news:

* memory can be dynamically allocated as needed, but may not be deallocated as needed,
due to unanticipated execution paths;

* void pointers allow heterogeneous function arguments of different types, but type
information may not be there when you need it.

C++ adds some additional considerations to pointer management: STL containers cannot hold
reference objects, so you are left with the choice of using either pointers or copies of objects.
Neither choice is attractive, as pointers can cause memory leaks and the copy constructor may
be expensive.

The idea behind a C++ smart pointer is to create a wrapper class capable of holding a pointer.
The wrapper class's constructors and destructors can then handle memory management as the
object goes in and out of scope. The problem with this solution is that it does not handle multiple
pointers to the same resource properly, and it raises the issue of ownership. This is essentially
what the auto_ptr offers, but this strategy is only safe to use when the resource maps to a single
pointer variable.

For example, the following code has two very serious problems:

int* ip = new int (5);
{
auto ptr<int> al(ip);
auto ptr<int> a2 (ip);
}
*ip = 10/ (*ip);

The first problem occurs inside the block where the two auto ptrs are defined. Both are
referencing the same variable pointed to by yet another C pointer, and each considers itself to

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=auto_ptr

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 56

be the owner of that reference. Thus, when the block is exited, the delete[] operation is executed
twice for the same pointer.

Even if this first problem did not occur - for example if only one auto_ptr had been defined -
the second problem occurs when we try to dereference ip. The delete operation occurring as
the block exits has now freed the dynamic memory to which ip points, so *ip now references
unallocated memory.

The problem with using auto_ptr is that it provides semantics of strict ownership. When an
auto_ptr is destructed, it deletes the object it points to, and therefore the object should not be
pointed to simultaneously by others. Two or more auto_ptrs should not own the same object;
that is, point to the same object. This can occur if two auto_ptrs are initialized to the same
object, as seen in the above example where auto pointers al and a2 are both initialized with
ip. In using auto_ptr, the programmer must ensure that situations similar to the above do not
occur.

The CRef (*) Class

These issues are addressed in the NCBI C++ Toolkit by using reference-counted smart pointers:
a resource cannot be deallocated until all references to it have ceased to exist. The
implementation of a smart pointer in the NCBI C++ Toolkit is actually divided between two
classes: CRef and CObject.

The CRef class essentially provides a pointer interface to a CObject, while the CObject actually
stores the data and maintains the reference count to it. The constructor used to create a new
CRef pointing to a particular CObject automatically increments the object's reference count.
Similarly, the CRef destructor automatically decrements the reference count. In both cases
however, the modification of the reference count is implemented by a member function of the
CObject. The CRef class itself does not have direct access to the reference count and contains
only a single data member - its pointer to a CObject. In addition to the CRef class's constructors
and destructors, its interface to the CObject pointer includes access/mutate functions such as:

bool Empty ()

bool NotEmpty ()

CObject* GetPointer ()
CObject& GetObject ()
CObject* Release()

void Reset (CObject* newPtr)
void Reset (void)

operator bool ()

bool operator! ()

CRefBaseé& operator=(const CRefBase& ref)

Both the Release() and Reset() functions set the CRef object's m_ptr to 0, thus effectively
removing the reference to its CObject. There are important distinctions between these two
functions however. The Release() method removes the reference without destroying the object,
while the Reset() method may lead to the destruction of the object if there are no other
references to it.

If the CObject's internal reference count is 1 at the time Release() is invoked, that reference
count will be decremented to 0, and a pointer to the CObject is returned. The Release() method
can throw two types of exceptions: (1) a null pointer exception if m_ptr is already 0, and (2)
an [llegal CObject::ReleaseReference() exception if there are currently other references to that
object. An object must be free of all references (but this one) before it can be "released". In

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 57

contrast, the Reset(void) function simply resets the CRef'sm_ptr to 0, decrements the CObject's
reference count, and, if the CObject has no other references and was dynamically allocated,
deletes the CObject.

Each member function of the CRef class also has a const implementation that is invoked when
the pointer is to a const object. In addition, there is also a CConstRef class that parallels the
CRef'class. Both CRefand CConstRef are implemented as template classes, where the template
argument specifies the type of object which will be pointed to. For example, in the section on
Traversing an ASN.1 Data Structure we examined the structure of the CBiostruc class and
found the following type definition

typedef list< CRef< ::CBiostruc_id > > TId;

As described there, this typedef defines TId to be a list of pointers to CBiostruc_id objects.
And as you might expect, CBiostruc_id is a specialized subclass of CObject.

The CObject (*) Class

The CObject class serves as a base class for all objects requiring a reference count. There is
little overhead entailed by deriving a new class from this base class, and most objects in the
NCBI C++ Toolkit are derived from the CObject class. For example, CNCBINode is a direct
descendant of CObject, and all of the other HTML classes descend either directly or indirectly
from CNCBINode. Similarly, all of the ASN.1 classes defined in the include/objects directory,
as well as many of the classes defined in the include/serial directory are derived either directly
or indirectly from the CObject class.

The CObject class contains a single private data member, the reference counter, and a set of
member functions which provide an interface to the reference counter. As such, it is truly a
base class which has no stand-alone utility, as it does not even provide allocation for data
values. It is the descendant classes, which inherit all the functionality of the CObject class, that
provide the necessary richness in representation and allocation required for the widely diverse
set of objects implemented in the NCBI C++ Toolkit. Nevertheless, it is often necessary to use
smart pointers on simple data types, such as int, string etc. The CObjectFor class, described
below, was designed for this purpose.

The CObjectFor (*) class: using smart pointers for standard types

The CObjectFor class is derived directly from CObject, and is implemented as a template class
whose argument specifies the standard type that will be pointed to. In addition to the reference
counter inherited from its parent class, CObjectFor has a private data member of the
parameterized type, and a member function GetData() to access it.

An example program, smart.cpp, uses the CRef and CObjectFor classes, and demonstrates the
differences in memory management that arise using auto_ptr and CRef. Using an auto_ptr to
reference an int, the program tests whether or not the reference is still accessible after an
auxilliary auto ptr which goes out of scope has also been used to reference it. The same
sequence is then tested using CRef objects instead.

In the first case, the original auto_ptr, orig_ap, becomes NULL at the moment when ownership
is transferred to copy_ap by the copy constructor. Using CRef objects however, the reference
contained in the original CRef remains accessible (via orig) in all blocks where orig is defined.
Moreover, the reference itself, i.e. the object pointed to, continues to exist until all references
to it have been removed.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConstRef.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_ser
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNCBINode.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectFor.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_demo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectFor.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CRef Pitfalls
Inadvertent Object Destruction

Page 58

When to use CRefs and auto_ptrs

There is some overhead in using CRef and auto_ptr, and these objects should only be used
where needed. Memory leaks are generally caused as a result of unexpected execution paths.
For example:

{
int *num = new int (5);
ComplexFunction (num);

delete num;

If ComplexFunction() executes normally, control returns to the block where it was invoked,
and memory is freed by the delete statement. Unforeseen events however, may trigger
exceptions, causing control to pass elsewhere. In these cases, the delete statement may never
be reached. The use of a CRef or an auto_ptr is appropriate for these situations, as they both
guarantee that the object will be destroyed when the reference goes out of scope.

One situation where they may not be required is when a pointer is embedded inside another
object. If that object's destructor also handles the deallocation of its embedded objects, then it
is sufficient to use a CRef on the containing object only.

When the last reference to a CRef object goes out of scope or the CRef is otherwise marked
for garbage collection, the object to which the CRef points is also destroyed. This feature helps
to prevent memory leaks, but it also requires care in the use of CRefs within methods and
functions.

class CMy : public CObject

void f (CMy* a)
{
CRef b

Il
©

return;

CMy* a = new CMy();

// the object "a" is now destroyed!
In this example the function f() establishes a local CRef to the CMy object a. On exiting f()
the CRefb is destroyed, including the implied destruction of the CMy objects a. To avoid this
behavior, pass a CRef to the function f() instead of a normal pointer variable:
CRef a = new CMy();

f(a);
// the CMy object pointed to by "a" is not destroyed!

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 59

Atomic Counters

The CORELIB implements efficient atomic counters that are used for CObject reference
counts. The classes CAtomicCounter and CMutableAtomicCounter provide respectively a
base atomic counter class, and a mutable atomic counter for multithreaded applications. These
classes are used to in reference counted smart pointers.

The CAtomicCounter base class provides the base methods Get(), Set(), Add() for atomic
counters:

class CAtomicCounter

{
public:

///< BAlias TValue for TNCBIAtomicValue

typedef TNCBIAtomicValue TValue;

/// Get atomic counter value.

TValue Get (void) const THROWS NONE;

/// Set atomic counter value.

void Set (TValue new_value) THROWS NONE;

/// Atomically add value (=delta), and return new counter value.

TValue Add(int delta) THROWS_ NONE;

TNCBIAtomicValue is defined as a macro and its definition is platform dependent. If threads
are not used (Macro NCBI_NO_THREADS defined), TNCBIAtomicValue is an unsigned int
value. If threads are used, then a number of defines in file "ncbictr.hpp" ensure that a platform
specific definition is selected for TNCBIAtomicValue.

The CMutableAtomicCounter uses the CAtomicCounter as its internal structure of the atomic
counter but declares this counter value as mutable. The Get(), Set(), Add() methods for
CMutableAtomicCounter are implemented by calls to the corresponding Get(), Set(), Add()
methods for the CAtomicCounter:

class CMutableAtomicCounter
{
public:
typedef CAtomicCounter::TValue TValue; ///< Alias TValue simplifies syntax
/// Get atomic counter value.
TValue Get (void) const THROWS NONE
{ return m Counter.Get(); }
/// Set atomic counter value.
void Set (TValue new_value) const THROWS NONE
{ m_Counter.Set (new_value); }
/// Atomically add value (=delta), and return new counter value.
TValue Add(int delta) const THROWS NONE
{ return m Counter.Add(delta); }

private:

}i

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 60

Portable mechanisms for loading DLLs

The CDll class defines a portable way of dynamically loading shared libraries and finding entry
points for functions in the library. Currently this portable behavior is defined for Unix-like
systems and Windows only. On Unix-like systems, loading of the shared library is implemented
using the Unix system call dlopen() and the entry point address obtained using the Unix system
call dlsym(). On Windows systems the system call LoadLibraray() is used to load the library,
and the system call GetProcAddress() is used to get a function's entry point address.

All methods of CDII class, except the destructor, throw the exception CCoreException::eDIl
on error.

You can specify when to load the DLL - when the CDII object is created (loading in the
constructor), or by an explicit call to CDIl::Load(). You can also specify whether the DLL is
unloaded automatically when CDII's destructor is called or if the DLL should remain loaded
in memory. This behavior is controlled by arguments to CDIl's constructor.

The following additional topics are described in this section:
+ CDIl Constructor

« CDIl Basename
* Other CDIl Methods

CDII Constructor

The CDII class has four constructors:

CD11 (const string& name, TFlags flags);
and

CD11 (const string& path, const stringé& name, TFlags flags);
and

CD11 (const string& name,

ELoad when_to_load = eLoadNow,

EAutoUnload auto_unload = eNoAutoUnload,

EBasename treate_as = eBasename) ;
and

CD11 (const string& path, const stringé& name,
ELoad when_to load = eLoadNow,
EAutoUnload auto_unload = eNoAutoUnload,

EBasename treate as = eBasename) ;

The first and second constructor forms are the same with the exception that the second
constructor uses two parameters - the path and name parameters - to build a path to the DLL,
whereas in the first constructor, the name parameter contains the full path to the DLL. The
third and fourth forms are likewise similar.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 61

The first pair of constructors differ from the second pair in that the first two take a single
parameter that is a set of flags, whereas the second pair take three separate parameters for flags.
The first two are newer, and the last two are provided for backward compatibility.

The parameter when_to_load is defined as an enum type of ELoad and has the values
eLoadNow or eLoadLater. When eLoadNow is passed to the constructor (default value), the
DLL is loaded in the constructor; otherwise it has to be loaded via an explicit call to the Load
() method.

The parameter auto load is defined as an enum type of EAutoLoad and has the values
eAutoUnload or eNoAutoUnload. When eAutoUnload is passed to the constructor (default
value), the DLL is unloaded in the destructor; otherwise it will remain loaded in memory.

The parameter treat_as is defined as an enum type of EBasename and has the values eBasename
or eExactName. When eBasename is passed to the constructor (default value), the name
parameter is treated as a basename if it looks like one; otherwise the exact name or "as is" value
is used with no addition of prefix or suffix.

The parameter flags is defined as an enum type of EFlags and has the values fLoadNow,
fLoadLater, fAutoUnload, fNoAutoUnload, fBaseName, fExactName, fGlobal, fLocal, and
fDefault. The flags fLoadNow, fLoadLater, fAutoUnload, fNoAutoUnload, fBaseName, and
fExactName correspond to the similarly named enum values as described in the above
paragraphs. The flag fGlobal indicates that the DLL should be loaded as RTLD GLOBAL,
while the flag fLocal indicates that the DLL should be loaded as RTLD LOCAL. The flag
fDefault is defined as:

fDefault = fLoadNow | fNoAutoUnload | fBaseName | fGlobal

CDIl Basename

The DLL name is considered the basename if it does not contain embedded /', \', or ":' symbols.
Also, in this case, if the DLL name does not match the pattern "lib*.so", "lib*.so0.*", or "*.dIl"
and if eExactName flag is not passed to the constructor, then it will be automatically
transformed according to the following rules:

0oS Rule
Unix-like | <name> -> lib<name>.so
Windows | <name> -> <name>.dll

If the DLL is specified by its basename, then it will be searched after the transformation
described above in the following locations:

¢ Unix:

— The directories that are listed in the LD _LIBRARY_ PATH environment
variable which are analyzed once at the process startup.

— The directory from which the application loaded
— Hard-coded (e.g. with ‘1dconfig' on Linux) paths

* Windows:
— The directory from which the application is loaded
— The current directory

— The Windows system directory

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 62

— The Windows directory

— The directories that are listed in the PATH environment variable

Other CDIl Methods

Two methods mentioned earlier for the CDII class are the Load() and Unload() methods. The
Load() method loads the DLL using the name specified in the constructor's DLL name
parameter. The Load() method is expected to be used when the DLL is not explictly loaded in
the constructor. That is, when the CDII constructor is passed the eLoadLater parameter. If the
Load() is called more than once without calling Unload() in between, then it will do nothing.
The syntax of the Load() methods is

void Load(void);

The Unload() method unloads that DLL whose name was specified in the constructor's DLL
name parameter. The Unload() method is expected to be used when the DLL is not explicitly
unloaded in the destructor. This occurs, when the CDII constructor is passed the
eNoAutoUnload parameter. If the Unload() is called when the DLL is not loaded, then it will
do nothing. The syntax of the Unload() methods is

void Unload(void) ;

Once the DLL is loaded, you can call the DLL's functions by first getting the function's entry
point (address), and using this to call the function. The function template GetEntryPoint()
method is used to get the entry point address and is defined as:

template <class TPointer>

TPointer GetEntryPoint (const string& name, TPointer* entry ptr);

This method returns the entry point's address on success, or NULL on error. If the DLL is not
loaded when this method is called, then this method will call Load() to load the DLL which
can result in throwing an exception if Load() fails.

Some sample code illustrating the use of these methods is shown in src/corelib/test/
test ncbidll.cpp

Executing Commands and Spawning Processes using the CExec class

The CExec defines a portable execute class that can be used to execute system commands and
Spawn new processes.
The following topics relating to the CExec class are discussed, next:

* Executing a System Command using the System() Method

* Defining Spawned Process Modes (EMode type)

* Spawning a Process using SpawnX() Methods

« Waiting for a Process to Terminate using the Wait() method

Executing a System Command using the System() Method

You can use the class-wide CExec::System() method to execute a system command:

static int System(const char* cmdline);

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 63

CExec::System() returns the executed command's exit code and throws an exception if the
command failed to execute. If cmdline is a null pointer, CExec::System() checks if the shell
(command interpreter) exists and is executable. If the shell is available, System() returns a non-
zero value; otherwise, it returns 0.

Defining Spawned Process Modes (EMode type)

The spawned process can be created in several modes defined by the enum type EMode. The
meanings of the enum values for EMode type are:

« eOverlay: This mode overlays the calling process with new process, destroying the
calling process.

« eWait: This mode suspends the calling thread until execution of a new process is
complete. That is, the called process is called synchronously.

« eNoWait: This is the opposite of eWait. This mode continues to execute the calling
process concurrently with the new called process in an asynchronous fashion.

+ eDetach: This mode continues to execute the calling process and new process is
"detached" and run in background with no access to console or keyboard. Calls to Wait
() against new process will fail. This is an asynchronous spawn.

Spawning a Process using SpawnX() Methods

A new process can be spawned by calling any of the class-wide methods named SpawnX()
which have the form:

static int SpawnX (const EMode mode,
const char *cmdname,

const char *argv,
)i
The parameter mode has the meanings discussed in the section Defining Spawned Process

Modes (EMode type). The parameter cmdname is the command-line string to start the process,
and parameter argv is the argument vector containing arguments to the process.

The X in the function name is a one to three letter suffix indicating the type of the spawn
function. Each of the letters in the suffix X, for SpawnX() have the following meanings:

« L: The letter "L" as suffix refers to the fact that command-line arguments are passed
separately as arguments.

« E: The letter "E" as suffix refers to the fact that environment pointer, envp, is passed
as an array of pointers to environment settings to the new process. The NULL
environment pointer indicates that the new process will inherit the parents' process's
environment.

* P:The letter "P" as suffix refers to the fact that the PATH environment variable is used
to find file to execute. Note that on a Unix-like system this feature works in functions
without letter "P" in the function name.

* V:Theletter "V" as suffix refers to the fact that the number of command-line arguments
is variable.

Using the above letter combinations as suffixes, the following spawn functions are defined:

* SpawnL(): In the SpawnL() version, the command-line arguments are passed
individually. SpawnL() is typically used when number of parameters to the new
process is known in advance.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 64

* SpawnLE(): In the SpawnLE() version, the command-line arguments and environment
pointer are passed individually. SpawnLE() is typically used when number of
parameters to the new process and individual environment parameter settings are
known in advance.

+ SpawnLP(): In the SpawnLP() version, the command-line arguments are passed
individually and the PATH environment variable is used to find the file to execute.
SpawnLP() is typically used when number of parameters to the new process is known
in advance but the exact path to the executable is not known.

* SpawnLPE(): In the SpawnLPE() the command-line arguments and environment
pointer are passed individually, and the PATH environment variable is used to find
the file to execute. SpawnLPE() is typically used when the number of parameters to
the new process and individual environment parameter settings are known in advance,
but the exact path to the executable is not known.

* SpawnV(): In the SpawnV() version, the command-line arguments are a variable
number. The array of pointers to arguments must have a length of 1 or more and you
must assign parameters for the new process beginning from 1.

* SpawnVE(): In the SpawnVE() version, the command-line arguments are a variable
number. The array of pointers to arguments must have a length of 1 or more and you
must assign parameters for the new process beginning from 1. The individual
environment parameter settings are known in advance and passed explicitly.

* SpawnVP(): In the SpawnVP() version, the command-line arguments are a variable
number. The array of pointers to arguments must have a length of 1 or more and you
must assign parameters for the new process beginning from 1. The PATH environment
variable is used to find the file to execute.

* SpawnVPE(): In the SpawnVPE() version, the command-line arguments are a variable
number. The array of pointers to arguments must have a length of 1 or more and you
must assign parameters for the new process beginning from 1. The PATH environment
variable is used to find the file to execute, and the environment is passed via an
environment vector pointer.

Refer to the include/corelib/ncbiexec.hpp file to view the exact form of the SpawnX() function
calls.

Some sample code illustrating the use of these methods is shown in src/corelib/test/
test_ncbiexec.cpp

Waiting for a Process to Terminate using the Wait() method

The CExec class defines a Wait() method that causes a process to wait until the child process
terminates:

static int Wait (const int pid);
The argument to the Wait() method is the pid (process ID) of the child process on which the
caller is waiting to terminate. Wait() returns immediately if the specified child process has

already terminated and returns an exit code of the child process, if there are no errors; or a -1,
if an error has occurred.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbiexec.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 65

Implementing Parallelism using Threads and Synchronization Mechanisms

This section provides reference information on how to add multithreading to your application
and how to use basic synchronization objects. For an overview of these concepts refer to the
introductory topic on this subject.

Note that all classes are defined in include/corelib/ncbithr.hpp and include/corelib/
ncbimtx.hpp.
The following topics are discussed in this section:

+ Using Threads
* CThread class public methods

* CThread class protected methods
» Thread Life Cycle
« Referencing thread objects

» Thread local storage (CTIs<> class [*])

Using Threads

CThread class is defined in include/corelib/ncbithr.hpp. The CThread class provides all basic
thread functionality: thread creation, launching, termination, and cleanup. To create user-
defined thread one needs only to provide the thread's Main() function and, in some cases, create
anew constructor to transfer data to the thread object, and override OnExit() method for thread-
specific data cleanup. To create a custom thread:

1 Derive your class from CThread, override Main() and, if necessary, OnExit() methods.

2 Create thread object in your application. You can do this only with new operator,
since static or in-stack thread objects are prohibited (see below). The best way to
reference thread objects is to use CRef<CThread> class.

Call Run() to start the thread execution.

Call Detach() to let the thread run independently (it will destroy itself on termination
then), or use Join() to wait for the thread termination.

The code should look like:

#include <corelib/ncbistd.hpp>
#include <corelib/ncbithr.hpp>
USING NCBI SCOPE;

class CMyThread : public CThread
{
public:

CMyThread (int index) : m Index(index) {}
virtual void* Main (void) ;
virtual void OnExit (void) ;
private:

int m_Index;

int* heap var;

bi
void* CMyThread::Main (void)

{

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbithr.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 66

cout << "Thread " << m Index << endl;
heap var = new int; // to be destroyed by OnExit ()
*heap_var = 12345;
int* return_value = new int; // return to the main thread
*return_value = m_Index;
return return value;
}
void CMyThread: :0OnExit (void)
{
delete heap_var;
}
int main (void)
{
CMyThread* thread = new CMyThread(33);
thread->Run() ;
int* result;
thread->Join (reinterpret cast<void**>(&result));
cout << "Returned value: " << *result << endl;
delete result;

return 0;

The above simple application will start one child thread, passing 33 as the index value. The
thread prints "Thread 33" message, allocates and initializes two integer variables, and
terminates. The thread's Main() function returns a pointer to one of the allocated values. This
pointer is then passed to Join() method and can be used by another thread. The other integer
allocated by Main() is destroyed by OnExit() method.

It is important not to terminate the program until there are running threads. Program termination
will cause all the running threads to terminate also. In the above example Join() function is
used to wait for the child thread termination.

The following subsections discuss the individual classes in more detail.

CThread (*) class public methods

CThread(void) Create the thread object (without running it). bool Run(void) Spawn the new
thread, initialize internal CThread data and launch user-provided Main(). The method
guarantees that the new thread will start before it returns to the calling function. void Detach
(void) Inform the thread that user does not need to wait for its termination. Detached thread
will destroy itself after termination. If Detach() is called for a thread, which has already
terminated, it will be scheduled for destruction immediately. Only one call to Detach() is
allowed for each thread object. void Join(void** exit data) Wait for the thread termination.
Join() will store the void pointer as returned by the user's Main() method, or passed to the Exit
() function to the exit data. Then the thread will be scheduled for destruction. Only one call to
Join() is allowed for each thread object. If called more than once, Join() will cause a runtime
error. static void Exit(void* exit data) This function may be called by a thread object itself to
terminate the thread. The thread will be terminated and, if already detached, scheduled for
destruction. exit data value is transferred to the Join() function as if it was returned by the
Main(). Exit() will also call virtual method OnExit() to execute user-provided cleanup code (if
any). bool Discard(void) Schedules the thread object for destruction if it has not been run yet.
This function is provided since there is no other way to delete a thread object without running
it. On success, return true. If the thread has already been run, Discard() do nothing and return

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 67

false. static CThread:: TID GetSelf(void) This method returns a unique thread ID. This ID may
be then used to identify threads, for example, to track the owner of a shared resource. Since
the main thread has no associated CThread object, a special value of 0 (zero) is reserved for
the main thread ID.

CThread (*) class protected methods

virtual void* Main(void)Main() is the thread's main function (just like an application main()
function). This method is not defined in the CThread class. It must be provided by derived
user-defined class. The return value is passed to the Join() function (and thus may be used by
another thread for some sort of inter-thread communication). virtual void OnExit(void) This
method is called (in the context of the thread) just before the thread termination to cleanup
thread-specific resources. OnExit() is NOT called by Discard(), since the thread has not been
run in this case and there are no thread-specific data to destroy. virtual ~CThread(void) The
destructor is protected to avoid thread object premature destruction. For this reason, no thread
object can be static or stack-allocated. It is important to declare any CThread derived class
destructor as protected.

Thread Life Cycle

Figure 2 shows a typical thread life cycle. The figure demonstrates that thread constructors are
called from the parent thread. The child thread is spawned by the Run() function only. Then,
the user-provided Main() method (containing code created by user) gets executed. The thread's
destructor may be called in the context of either parent or child thread depending on the state
of the thread at the moment when Join() or Detach() is called.

There are two possible ways to terminate a thread. By default, after user-provided Main()
function return, the Exit() is called implicitly to terminate the thread. User functions can call
CThread::Exit() directly. Since Exit() is a static method, the calling function does not need to
be a thread class member or have a reference to the thread object. Exit() will terminate the
thread in which context it is called.

The CThread destructor is protected. The same must be true for any user-defined thread class
in order to prohibit creation of static or automatic thread objects. For the same reason, a thread
object can not be destroyed by explicit delete. All threads destroy themselves on termination,
detaching, or joining.

On thread termination, Exit() checks if the thread has been detached and, if this is true, destroys
the thread object. If the thread has not been detached, the thread object will remain "zombie"
unless detached or joined. Either Detach() or Join() will destroy the object if the thread has
been terminated. One should keep in mind, that it is not safe to use the thread object after a
call to Join() or Detach() since the object may happen to be destroyed. To avoid this situation,
the CRef<CThread> can be used. The thread object will not be destroyed until there is at least
one CRef to the object (although it may be terminated and scheduled for destruction).

In other words, a thread object will be destroyed when all of the following conditions are
satisfied:

 the thread has been run and terminated by an implicit or explicit call to Exit()
+ the thread has been detached or joined
« no CRefreferences the thread object

Which thread will actually destroy a thread object depends on several conditions. If the thread
has been detached before termination, the Exit() method will destroy it, provided there are no
CRef references to the object. When joined, the thread will be destroyed in the context of a

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 68

joining thread. If Detach() is called after thread termination, it will destroy the thread in the
context of detaching thread. And, finally, if there are several CRef objects referencing the same
thread, it will be destroyed after the last CRef release.

This means that cleaning up thread-specific data can not be done from the thread destructor.
One should override OnExit() method instead. OnExit() is guaranteed to be called in the context
of the thread before the thread termination. The destructor can be used to cleanup non-thread-
local data only.

There is one more possibility to destroy a thread. If a thread has been created, but does not
need to be run, one can use Discard() method to destroy the thread object without running it.
Again, the object will not be destroyed until there are CRefs referencing it.

Referencing Thread Objects

It should be emphasized that regular (C) pointer to a thread object is not reliable. The thread
may terminate at unpredictable moment, destroying itself. There is no possibility to safely
access thread object after Join() using C pointers. The only solution to this problem is to use
CRef class. CThread class provides a mechanism to prevent premature destruction if there are
CRef references to the thread object.

Thread local storage (CTIs<> class [*])

The library provides a template class to store thread specific data: CTls<>. This means that
each thread can keep its own data in the same TLS object. To perform any kind of cleanup one
can provide cleanup function and additional cleanup data when storing a value in the TLS
object. The following example demonstrates the usage of TLS:

CRef< CTls<int> > tls(new CTls<int>);
void TlsCleanup (int* p value, void* /* data */)
{

delete p_value;

}

void* CMyThread: :Main ()
{
int* p value = new int;
*p value = 1;

tls->SetValue (p_value, TlsCleanup);
p_value = new int;
*p value = 2;

tls->SetValue (p_value, TlsCleanup);

if (*tls->GetValue() == 2) {

In the above example the second call to SetValue() will cause the TlsCleanup() to deallocate
the first integer variable. To cleanup the last value stored in each TLS, the CThread::Exit()
function will automatically call CTls<>::Reset() for each TLS used by the thread.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTls

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Mutexes

CMutex

Page 69

By default, all TLS objects are destroyed on program termination, since in most cases it is not
guaranteed that a TLS object is not (or will not be) used by a thread. For the same reason the
CTls<> destructor is protected, so that no TLS can be created in the stack memory. The best
way of keeping TLS objects is to use CRef.

Calling Discard() will schedule the TLS to be destroyed as soon as there are no CRef references
to the object left. The method should be used with care.

The ncbimtx.hpp defines platform-independent mutex classes, CMutex, CFastMutex,
CMutexGuard, and CFastMutexGuard. These mutex classes are in turn built on the platform-
dependent mutex classes SSystemMutex and SSystemFastMutex.

In addition to the mutex classes, there are a number of classes that can be used for explicit
locks such as the CRWLock, CAutoRW, CReadLockGuard, CWriteLockGuard and the
platform-dependent read/write lock, CInternalRWLock.

Finally, there is the CSemaphore class which is an application-wide semaphore.

These classes are discussed in the subsections that follow:
+ CMutex
+ CFastMutex
+ SSystemMutex and SSystemFastMutex
+ CMutexGuard and CFastMutexGuard
* Lock Classes

The CMutex class provides the API for acquiring a mutex. This mutex allows nesting with
runtime checks so recursive locks by the same thread is possible. This mutex checks the mutex
owner before unlocking. CMutex is slower than CFastMutex and should be used when
performance is less important than data protection. If performance is more important than data
protection, use CFastMutex, instead.

The main methods for CMutex operation are Lock(), TryLock() and Unlock():

void Lock (void);
bool TryLock (void) ;

void Unlock (void) ;

The Lock() mutex method is used by a thread to acquire a lock. The lock can be acquired only
if the mutex is unlocked; that is, not in use. If a thread has acquired a lock before, the lock
counter is incremented. This is called nesting. The lock counter is only decremented when the
same thread issues an Unlock(). In other words, each call to Lock() must have a corresponding
Unlock() by the same thread. If the mutex has been locked by another thread, then the thread
must wait until it is unlocked. When the mutex is unlocked, the waiting thread can acquire the
lock. This, then, is like a lock on an unlocked mutex.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,
acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE.
If the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and
returns TRUE.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 70

The Unlock() method is used to decrease the lock counter if the mutex has been acquired by
this thread. When the lock counter becomes zero, then the mutex is completely released
(unlocked). If the mutex is not locked or locked by another thread, then the exception
CMutexException (eOwner) is thrown.

The CMutex uses the functionality of CFastMutex. Because CMutex allows nested locks and
performs checks of mutex owner it is somewhat slower than CFastMutex, but capable of
protecting complicated code, and safer to use. To guarantee for a mutex release, CMutexGuard
can be used. The mutex is locked by the CMutexGuard constructor and unlocked by its
destructor. Macro DEFINE _STATIC MUTEX(id) will define static mutex variable with name
id. Macro DECLARE CLASS STATIC MUTEX(id) will declare static class member of
mutex type name id. Macro DEFINE CLASS STATIC MUTEX(class, id) will define class
static mutex variable class::id. The following example demonstrates usage of CMutex,
including lock nesting:

static int Count = 0;
(

DEFINE STATIC MUTEX (CountMutex) ;

void Add2 (void)
{
CMutexGuard guard (CountMutex) ;
Count += 2;
if (Count < 20) {
Add3 () ;
}
}

void Add3 (void)
{
CMutexGuard guard (CountMutex) ;
Count += 3;
if (Count < 20) {
Add2 () ;
}
}

This example will result in several nested locks of the same mutex with the guaranteed release
of each lock.

It is important not to unlock the mutex protected by a mutex guard. CFastMutexGuard and
CMutexGuard both unlock the associated mutex on destruction. It the mutex is already
unlocked this will cause a runtime error. Instead of unlocking the mutex directly one can use
CFastMutexGuard::Release() or CMutexGuard::Release() method. These methods unlock the
mutex and unlink it from the guard.

In addition to usual Lock() and Unlock() methods, the CMutex class implements a method to
test the mutex state before locking it. TryLock() method attempts to acquire the mutex for the
calling thread and returns true on success (this includes nested locks by the same thread) or
false if the mutex has been acquired by another thread. After a successful TryLock() the mutex
should be unlocked like after regular Lock().

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CFastMutex

Page 71

The CFastMutex class provides the API for acquiring a mutex. Unlike CMutex, this mutex
does not permit nesting and does not check the mutex owner before unlocking. CFastMutex
is, however, faster than CMutex and should be used when performance is more important than
data protection. If performance is less important than data protection, use CMutex, instead.

The main methods for CFastMutex operation are Lock(), TryLock() and Unlock():

void Lock (void);
bool TryLock (void);

void Unlock (void) ;

The Lock() mutex method is used by a thread to acquire a lock without any nesting or ownership
checks.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,
acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE.
If the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and
returns TRUE. The locking is done without any nesting or ownership checks.

The Unlock() method is used to unlock the mutex without any nesting or ownership checks.

The CFastMutex should be used only to protect small and simple parts of code. To guarantee
for the mutex release the CFastMutexGuard class may be used. The mutex is locked by the
CFastMutexGuard constructor and unlocked by its destructor. To avoid problems with
initialization of static objects on different platforms, special macro definitions are intended to
be used to declare static mutexes. Macro DEFINE STATIC FAST MUTEX(id) will define
static mutex variable with name id. Macro DECLARE CLASS STATIC FAST MUTEX(id)
will declare static class member of mutex type with name id. Macro

DEFINE CLASS STATIC FAST MUTEX(class, id) will define static class mutex variable
class::id. The example below demonstrates how to protect an integer variable with the fast
mutex:

void ThreadSafe (void)

{

static int Count = 0;

DEFINE STATIC FAST MUTEX (CountMutex) ;
{{

CFastMutexGuard guard(CountMutex) ;

Count++;
+}

}

SSystemMutex and SSystemFastMutex

The CMutex class is built on the platform-dependent mutex class, SSystemMutex. The
SSystemMutex is in turn built using the SSystemFastMutex class with additional provisions
for keeping track of the thread ownership using the CThreadSystemlID, and a counter for the
number of in the same thread locks (nested or recursive locks).

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Lock Classes

Page 72

Each of the SSystemMutex and SSystemFastMutex classes have the Lock(), TryLock() and
Unlock() methods that are platform specific. These methods are used by the platform
independent classes, CMutex and CFastMutex to provide locking and unlocking services.

CMutexGuard and CFastMutexGuard

The CMutexGuard and the CFastMutexGuard classes provide platform independent read and
write lock guards to the mutexes. These classes are aliased as typedefs TReadLockGuard and
TWriteLockGuard in the CMutexGuard and the CFastMutexGuard classes.

This class implements sharing a resource between multiple reading and writing threads. The
following rules are used for locking:

« ifunlocked, the RWLock can be acquired for either R-lock or W-lock
« if R-locked, the RWLock can be R-locked by the same thread or other threads

+ if W-locked, the RWLock can not be acquired by other threads (a call to ReadLock()
or WriteLock() by another thread will suspend that thread until the RW-lock release).

* R-lock after W-lock by the same thread is allowed but treated as a nested W-lock
« W-lock after R-lock by the same thread results in a runtime error

Like CMutex, CRWLock also provides methods for checking its current state: TryReadLock
() and TryWriteLock(). Both methods try to acquire the RW-lock, returning true on success
(the RW-lock becomes R-locked or W-locked) or false if the RW-lock can not be acquired for
the calling thread.

The following subsections describe these locks in more detail:
* CRWLock
* CAutoRW
* CReadLockGuard
* CWriteLockGuard
* ClnternalRWLock

+ CSemaphore

CRWlLock

The CRWLock class allows read-after-write (R-after-W) locks for multiple readers or a single
writer with recursive locks. The R-after-W lock is considered to be a recursive Write-lock. The
write-after-read (W-after-R) is not permitted and can be caught when DEBUG is defined.
When DEBUG is not defined, it does not always detect the W-after-R correctly, so a deadlock
can occur in these circumstances. Therefore, it is important to test your application in the
_DEBUG mode first.

The main methods in the class API are ReadLock(), WriteLock(), TryReadLock(),
TryWriteLock() and Unlock().

void ReadLock (void) ;
void WriteLock (void) ;
bool TryReadLock (void) ;
bool TryWriteLock (void) ;

void Unlock (void) ;

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 73

The ReadLock() is used to acquire a read lock. If a write lock has already been acquired by
another thread, then this thread waits until it is released.

The WriteLock() is used to acquire a write lock. If a read or write lock has already been acquired
by another thread, then this thread waits until it is released.

The TryReadLock() and TryWriteLock() methods are used to try and acquire a read or write
lock, respectively, if at all possible. If a lock cannot be acquired, they immediately return with
aFALSE value and do not wait to acquire a lock like the ReadLock() and WriteLock() methods.
If a lock is successfully acquired, a TRUE value is returned.

As expected from the name, the Unlock() method releases the RW-lock.

CAutoRW

The CAutoRW class is used to provide a Read Write lock that is automatically released by the
CAutoRW class' destructor. The locking mechanism is provided by a CRWLock object that is
initialized when the CAutoRW class constructor is called.

An acquired lock can be released by an explicit call to the class Release() method. The lock
can also be released by the class destructor. When the destructor is called the lock if successfully
acquired and not already released by Release() is released.

CReadlLockGuard

The CReadLockGuard class is used to provide a basic read lock guard that can be used by other
classes. This class is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a read lock is acquired, and
which is registered to be released by the class destructor. The class's Guard() method can also
be called with a CRWLock object and if this is not the same as the already registered CRWLock
object, the old registered object is released, and the new CRWLock object is registered and a
read lock acquired on it.

CWriteLockGuard

The CWriteLockGuard class is used to provide a basic write lock guard that can be used by
other classes. The CWriteLockGuard class is similar to the CReadLockGuard class except that
it provides a write lock instead of a read lock. This class is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a write lock is acquired, and
which is registered to be released by the class destructor. The class's Guard() method can also
be called with a CRWLock object and if this is not the same as the already registered CRWLock
object, the old registered object is released, and the new CRWLock object is registered and a
write lock acquired on it.

CinternalRWLock

The CInternalRWLock class holds platform dependent RW-lock data such as data on
semaphores and mutexes. This class is not meant to be used directly by user applications. This
class is used by other classes such as the CRWLock class.

CSemaphore

The CSemaphore class implements a general purpose counting semaphore. The constructor is
passed an initial count for the semaphore and a maximum semaphore count.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 74

When the Wait() method is executed for the semaphore, the counter is decremented by one. If
the semaphore's count is zero then the thread waits until it is not zero. A variation on the Wait
() method is the TryWait() method which is used to prevent long waits. The TryWait() can be
passed a timeout value in seconds and nanoseconds:

bool TryWait (unsigned int timeout sec = 0, unsigned int timeout nsec = 0);
The TryWait() method can wait for the specified time for the semaphore's count to exceed zero.
If that happens, the counter is decremented by one and TryWait() returns TRUE; otherwise, it
returns FALSE.

The semaphore count is incremented by the Post() method and an exception is thrown if the
maximum count is exceeded.

Working with File and Directories Using CFile and CDir

An application may need to work with files and directories. The CORELIB provides a number
of portable classes to model a system file and directory. The base class for the files and
directories is CDirEntry. Other classes such as CDir and CFile that deal with directories and
files are derived form this base class.

The following sections discuss the file and directory classes in more detail:

» Executing a System Command using the System() Method

* Defining Spawned Process Modes (EMode type)

* Spawning a Process using SpawnX() Methods

+ Waiting for a Process to Terminate using the Wait() method

CDirEntry class

This class models the directory entry structure for the file system and assumes that the path
argument has the following form, where any or all components may be missing:

<dir><title><ext>

where:
« <dir> -- is the file path ("/ust/local/bin/" or "c:\windows\")
« <title> -- is the file name without ext ("autoexec")
« <ext> -- is the file extension (".bat" - whatever goes after the last dot)

The supported filename formats are for the Windows, Unix, and Mac file systems.

The CDirEntry class provides the base methods such as the following for dealing with the
components of a path name :

* GetPath(): Get pathname.

* GetDir(): Get the Directory component for this directory entry.

* GetBase(): Get the base entry name without extension.

+ GetName(): Get the base entry name with extension.

+ GetExt(): Get the extension name.

« MakePath(): Given the components of a path, combine them to create a path string.

* SplitPath(): Given a path string, split them into its constituent components.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDirEntry.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 75

* GetPathSeparator(): Get path separator symbol specific for the platform such as a '\'
or'/

+ IsPathSeparator(): Check character "c" as path separator symbol specific for the
platform.

* AddTrailingPathSeparator(): Add a trailing path separator, if needed.

« ConvertToOSPath(): Convert relative "path" on any OS to current OS dependent
relative path.

« IsAbsolutePath(): Note that the "path" must be for current OS.

* ConcatPath(): Concatenate the two parts of the path for the current OS.
* ConcatPathEx(): Concatenate the two parts of the path for any OS.

* MatchesMask(): Match "name" against the filename "mask".

» Rename(): Rename entry to specified "new_path".

* Remove(): Remove the directory entry.

The last method on the list, the Remove() method accepts an enumeration type parameter,
EDirRemoveMode, which specifies the extent of the directory removal operation - you can
delete only an empty directory, only files in a directory but not any subdirectories, or remove
the entire directory tree:

/// Directory remove mode.
enum EDirRemoveMode ({

eOnlyEmpty, ///< Remove only empty directory

eNonRecursive, ///< Remove all files in directory, but not remove
///< subdirectories and files in it

eRecursive ///< Remove all files and subdirectories

bi

CDirEntry knows about different types of files or directory entries. Most of these file types are
modeled after the Unix file system but can also handle the file system types for the Windows
platform. The different file system types are represented by the enumeration type EType which
is defined as follows :

/// Which directory entry type.
enum EType {

eFile = 0, ///< Regular file

eDir, ///< Directory

ePipe, ///< Pipe

eLink, ///< Symbolic link (Unix only)
eSocket, ///< Socket (Unix only)
eDoor, ///< Door (Unix only)
eBlockSpecial, ///< Block special (Unix only)
eCharSpecial, ///< Character special
//

eUnknown ///< Unknown type

bi

CDirEntry knows about permission settings for a directory entry. Again, these are modeled

after the Unix file system. The different permissions are represented by the enumeration type
EMode which is defined as follows :

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 76

/// Directory entry's access permissions.
enum EMode {
fExecute = 1, ///< Execute permission
fWrite = 2, ///< Write permission
fRead = 4, ///< Read permission
// initial defaults for dirs
fDefaultDirUser = fRead | fExecute | fWrite,
///< Default user permission for dir.
fDefaultDirGroup = fRead | fExecute,
///< Default group permission for dir.
fDefaultDirOther = fRead | fExecute,
///< Default other permission for dir.
// initial defaults for non-dir entries (files, etc.)
fDefaultUser = fRead | fWrite,
///< Default user permission for file
fDefaultGroup = fRead,
///< Default group permission for file
fDefaultOther = fRead,
///< Default other permission for file
fDefault = 8 ///< Special flag: ignore all other flags,
///< use current default mode
bi
typedef unsigned int TMode; ///< Binary OR of "EMode"

The directory entry permissions of read(r), write(w), execute(x), are defined for the "user",
"group" and "others" The initial default permission for directories is "rwx" for "user", "rx" for
"group" and "rx" for "others". These defaults allow a user to create directory entries while the
"group" and "others" can only change to the directory and read a listing of the directory
contents. The initial default permission for files is "rw" for "user", "r" for "group" and "r" for
"others". These defaults allow a user to read and write to a file while the "group" and "others"

can only read the file.

These directory permissions handle most situations but don't handle all permission types. For
example, there is currently no provision for handling the Unix "sticky bit" or the "suid" or
"sgid" bits. Moreover, operating systems such as Windows NT/2000/2003 and Solaris use
Access Control Lists (ACL) settings for files. There is no provision in CDirEntry to handle
ACLs

Other methods in CDirEntry deal specifically with checking the attributes of a directory entry
such as the following methods:

« IsFile(): Check if directory entry is a file.

» IsDir(): Check if directory entry is a directory.

* GetType(): Get type of directory entry. This returns an EType value.
* GetTime(): Get time stamp of directory entry.

+ GetMode(): Get permission mode for the directory entry.

* SetMode(): Set permission mode for the directory entry.

« static void SetDefaultModeGlobal(): Set default mode globally for all CDirEntry
objects. This is a class-wide static method and applies to all objects of this class.

+ SetDefaultMode(): Set mode for this one object only.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

CFile class

CDir class

Page 77

These methods are inherited by the derived classes CDir and CFile that are used to access
directories and files, respectively.

The CFile is derived from the base class, CDirEntry. Besides inheriting the methods discussed
in the previous section, the following new methods specific to files are defined in the CFile
class:

« Exists(): Check existence for a file.
* GetLength(): Get size of file.
* GetTmpName(): Get temporary file name.

* GetTmpNameEx(): Get temporary file name in a specific directory and having a
specified prefix value.

* CreateTmpFile(): Create temporary file and return pointer to corresponding stream.

+ CreateTmpFileEx(): Create temporary file and return pointer to corresponding stream.
You can additionally specify the directory in which to create the temporary file and
the prefix to use for the temporary file name.

The methods CreateTmpFile() and CreateTmpFileEx() allow the creation of either a text or
binary file. These two types of files are defined by the enumeration type, ETextBinary, and the
methods accept a parameter of this type to indicate the type of file to be created:

/// What type of temporary file to create.
enum ETextBinary {

eText, ///<Create text file

eBinary ///< Create binary file

bi

Additionally, you can specify the type of operations (read, write) that should be permitted on
the temporary files. These are defined by the enumeration type, EAllowRead, and the
CreateTmpFile() and CreateTmpFileEx() methods accept a parameter of this type to indicate
the type operations that are permitted:

/// Which operations to allow on temporary file.
enum EAllowRead {

eAllowRead, ///< Allow read and write
eWriteOnly ///< Allow write only

bi

The CDir is derived from the base class, CDirEntry. Besides inheriting the methods discussed
in the CDirEntry section, the following new methods specific to directories are defined in the
CDir class:

« Exists(): Check existence for a directory.

* GetHome(): Get the user's home directory.
* GetCwd(): Get the current working directory.

* GetEntries(): Get directory entries based on a specified mask parameter. Retuns a
vector of pointers to CDirEntry objects defined by TEntries

* Create(): Create the directory using the directory name passed in the constructor.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCFile.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDir.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 78

* CreatePath(): Create the directory path recursively possibly more than one at a time.
* Remove(): Delete existing directory.

The last method on the list, the Remove() method accepts an enumeration type parameter,
EDirRemoveMode, defined in the CDirEntry class which specifies the extent of the directory
removal operation - you can delete only an empty directory, only files in a directory but not
any subdirectories, or remove the entire directory tree.

CMemoryFile class

The CMemoryFile is derived from the base class, CDirEntry. This class creates a virtual image
of a disk file in memory that allow normal file operations to be permitted, but the file operations
are actually performed on the image of the file in memory. This can result in considerable
improvements in speed when there are many "disk intensive" file operations being performed
on a file which is mapped to memory.

Besides inheriting the methods discussed in the CDirEntry section, the following new methods
specific to memory mapped are defined in the CMemoryFile class:

+ IsSupported(): Check if memory-mapping is supported by the C++ Toolkit on this
platform.

* GetPtr(): Get pointer to beginning of data in the memory mapped file.

* GetSize(): Get size of the mapped area.

* Flush(): Flush by writing all modified copies of memory pages to the underlying file.
* Unmap(): Unmap file if it has already been mapped.

+ MemMapAdvise(): Advise on memory map usage.

* MemMapAdviseAddr(): Advise on memory map usage for specified region.

The methods MemMapAdvise() and MemMapAdviseAddr() allow one to advise on the
expected usage pattern for the memory mapped file. The expected usage pattern is defined by
the enumeration type, EMemMapAdvise, and these methods accept a parameter of this type
to indicate the usage pattern:

/// What type of data access pattern will be used for mapped region.

/17

/// Advises the VM system that the a certain region of user mapped memory
/// will be accessed following a type of pattern. The VM system uses this
/// information to optimize work with mapped memory.

/17

/// NOTE: Now works on Unix platform only.

typedef enum {

eMMA Normal, ///< No further special treatment

eMMA Random, ///< Expect random page references

eMMA Sequential, ///< Expect sequential page references

eMMA WillNeed, ///< Will need these pages

eMMA DontNeed ///< Don't need these pages

} EMemMapAdvise;

The memory usage advice is implemented on Unix platforms only, and is not supported on
Windows platforms.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCMemoryFile.html

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 79

String APIs

The ncbistr.hpp file defines a number of useful constants, types and functions for handling
string types. Most of the string functions are defined as class-wides static members of the class
NStr.

The following sections provide additional details on string APIs

* String Constants
* NStr Class

« UTF-8 Strings
* PCase and PNocase

String Constants

NStr Class

For convenience, two types of empty strings are provided. A C-language style string that
terminates with the null character ('\0') and a C++ style empty string.

The C-language style empty string constants are NcbiEmptyCStr which is a macro definition
for the NCBI_NS_NCBI::kEmptyCStr. So the NcbiEmptyStr and kEmptyCStr are, for all
practical purposes, equivalent.

The C++-language style empty string constants are NcbiEmptyString and the kEmptyStr which
are macro definitions for the NCBI NS NCBI::CNcbiEmptyString::Get() method that returns
an empty string. So the NcbiEmptyString and kEmptyStr are, for all practical purposes,
equivalent.

The SIZE_TYPE is an alias for the string::size_type, and the NPOS defines a constant that is
returned when a substring search fails, or to indicate an unspecified string position.

The NStr class encapsulates a number of class-wide static methods. These include string
concatenation, string conversion, string comparison, string search functions. Most of these
string operations should be familiar to developers by name. For details, see the NStr static
methods documentation.

UTF-8 Strings

The CStringUTF8 class extends the C++ string class and provides support for Unicode
Transformation Format-8 (UTF-8) strings.

This class supports constructors where the input argument is a string reference, char* pointer,
and wide string, and wide character pointers. Wide string support exists if the macro
HAVE WSTRING is defined:

CStringUTF8 (const stringé& src);
CStringUTF8 (const char* src);

CStringUTF8 (const wstring& src);
(

CSstringUTF8 (const wchar t* src);
The CStringUTFS8 class defines assignment(=) and append-to string (+=) operators where the

string assigned or appended can be a CStringUTF8 reference, string reference, char* pointer,
wstring reference, wchar t* pointer.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classNStr.html#pub-static-methods
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classNStr.html#pub-static-methods

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 80

Conversion to ASCII from CStringUTF8 is defined by the AsAscii() method. This method can
throw a StringException with error codes 'eFormat' or 'eConvert' if the string has a wrong
UTF-8 format or cannot be converted to ASCIL

string AsAscii(void) const;

wstring AsUnicode (void) const

PCase and PNocase

The PCase and PNocase structures define case-sensitive and case-insensitive comparison
functions, respectively. These comparison functions are the Compare(), Less(), Equals(),
operator(). The Compare() returns an integer (-1 for less than, 0 for equal to, 1 for greater than).
The Less() and Equals() return a TRUE if the first string is less than or equal to the second
string. The operator() returns TRUE if the first string is less than the second.

A convenience template function AStrEquiv is defined that accepts the two classes to be
compared as template parameters and a third template parameter that can be the comparison
class such as the PCase and PNocase defined above.

Portable Time Class

The ncbitime.hpp defines CTime, the standard Date/Time class that also can be used to
represent elapsed time. Please note that the CTime class works for dates after 1/1/1900 and
should not be used for elapsed time prior to this date. Also, since Mac OS 9 does not support
the daylight savings flag, CTime does not support daylight savings on this platform.

The subsections that follow discuss the following topics:
+ CTime Class Constructors
+ Other CTime Methods

CTime Class Constructors

The CTime class defines three basic constructors that accept commonly used time description
arguments and some explicit conversion and copy constructors. The basic constructors are the
following:

* Constructor 1:
CTime(EInitMode mode = eEmpty,
ETimeZone tz = eLocal,
ETimeZonePrecision tzp = eTZPrecisionDefault);

* Constructor 2:
CTime(int year,
int month,
int day,
int hour = 0,
int minute = 0,
int second = 0,
long nanosecond = 0,
ETimeZone tz = Local,
ETimeZonePrecision tzp = eTZPrecisionDefault);

* Constructor 3:
CTime(int year,
int yearDayNumber,

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 81

ETimeZone tz = eLocal,
ETimeZonePrecision tzp = eTZPrecisionDefault);

In Constructor 1, the EInitMode is an enumeration type defined in the CTime class that can be
used to specify whether to build the time object with empty time value (eEmpty) or current
time (eCurrent). The ETimeZone is an enumeration type also defined in the CTime class that
is used to specify the local time zone (eLocal) or GMT (eGmt. The ETimeZonePrecision is an
enumeration type also defined in the CTime class that can be used to specify the time zone
precision to be used for adjusting the daylight savings time. The default value is eNone, which
means that daylight savings do not affect time calculations.

Constructor 2 differs from Constructor 1 with respect to how the timestamp is specified. Here
the time stamp is explictly specified as the year, month, day, hour, minute, second, and
nanosecond values. The other parameters of type ETimeZone and ETimeZonePrecision have
the meanings discussed in the previous paragraph.

Constructor 3 allows the timestamp to be constructed as the Nth day (yearDayNumber) of a
year(year). The other parameters of type EtimeZone and ETimeZonePrecision have the
meanings discussed in the previous paragraph.

The explicit conversion constructor allows the conversion to be made from a string
representation of time. The default value of the format string is kEmptyStr, which implies that
the format string has the format "M/D/Y h:m:s". As one would expect, the format specifiers
M, D, Y, h, m, and s have the meanings month, day, year, hour, minute, and second,
respectively:

explicit CTime (const stringé& str,
const string& fmt = kEmptyStr,
ETimeZone tz = elocal,

ETimeZonePrecision tzp = eTZPrecisionDefault);

There is also a copy constructor defined that permits copy operations for CTime objects.

Other CTime Methods

Once the CTime object is constructed, it can be accessed using the SetTimeT() and GetTimeT
() methods. The SetTimeT() method is used to set the CTime with the timestamp passed by

the time_t parameter. The GetTimeT() method returns the time stored in the CTime object as
atime tvalue. The time t value measures seconds since January 1, 1900; therefore, do not use
these methods if the timestamp is less than 1900. Also, time formats are in GMT time format.

A series of methods that set the time using the database formats TDBTimel and TDBTimeU
are also defined. These database time formats contain local time only and are defined as
typedefs in ncbitime.hpp. The mutator methods are SetTimeDBI() and SetTimeDBU(), and
the accessor methods are GetTimeDBI() and GetTimeDBU().

You can set the time to the current time using the SetCurrent() method, or set it to "empty"
using the Clear() method. If you want to measure time as days only and strip the hour, minute,
and second information, you can use Truncate() method.

You can get or set the current time format using the GetFormat() and SetFormat() methods.

You can get and set the individual components of time, such as year, day, month, hour, minute,
second, and nanosecond. The accessor methods for these components are named after the
component itself, and their meanings are obvious, e.g., Year() for getting the year component,

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 82

Month() for getting the month component, Day() for getting the day component, Hour() for
getting the hour component, Minute() for getting the minute component, Second() for getting
the second component, and NanoSecond() for getting the nanosecond component. The
corresponding mutator methods for setting the individual components are the same as the
accessor, except that they have the prefix "Set" before them. For example, the mutator method
for setting the day is SetDay(). A word of caution on setting the individual components: You
can easily set the timestamp to invalid values, such as changing the number of days in the
month of February to 29 when it is not a leap year, or 30 or 31.

A number of methods are available to get useful information from a CTime object. To get a
day's year number (1 to 366) use YearDayNumber(). To get the week number in a year, use
YearWeekNumber(). To get the week number in a month, use MonthWeekNumber(). You can
get the day of week (Sunday=0) by using DayOfWeek(), or the number of days in the current
month by using DaysInMonth().

There are times when you need to add months, days, hours, minutes, or seconds to an existing
CTime object. You can do this by using the AddXXX() methods, where the "XXX" is the time
component such as "Year", "Month", "Day", "Hour", "Minute", "Second", "NanoSecond" that
is to be added to. Be aware that because the number of days in a month can vary, adding months
may change the day number in the timestamp. Operator methods for adding to (+=), subtracting
from (-=), incrementing (++), and decrementing (--) days are also available.

If you need to compare two timestamps, you can use the operator methods for equality (==),
in-equality (!=), earlier than (<), later than (>), or a combination test, such as earlier than or
equal to (<=) or later than or equal to (>=).

You can measure the difference between two timestamps in days, hours, minutes, seconds, or
nanoseconds. The timestamp difference methods have the form DiffXXX(), where "XXX" is
the time unit in which you want the difference calculated such as "Day", "Hour", "Minute",

"Second", or "NanoSecond". Thus, DiffHour() can be used to calculate the difference in hours.

There are times when you may need to do a check on the timestamp. You can use IsLeap() to
check if the time is in a leap year, or if it is empty by using IsEmpty(), or if it is valid by using
IsValid(), or if it is local time by using IsLocalTime(), or if it is GMT time by using IsGmtTime

0

If you need to work with time zones explicitly, you can use GetTimeZoneFormat() to get the
current time zone format, and SetTimeZoneFormat() to change it. You can use
GetTimeZonePrecision() to get the current time zone precision and SetTimeZonePrecision()
to change it. To get the time zone difference between local time and GMT, use TimeZoneOffset
(). To get current time as local time use GetLocalTime(), and as GMT time use GetGmtTime
(). To convert current time to a specified time zone, use ToTime(), or to convert to local time
use ToLocalTime().

Also defined for CTime are assignment operators to assign a CTime object to another CTime
and an assignment operator where the right hand side is a time value string.

Template Utilities

The ncbiutil.hpp file defines a number of useful template functions, classes, and struct
definitions that are used in other parts of the library.

The following topics are discussed in this section:

« Function Objects

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 83

« Template Functions

Function Objects

The p_equal to and pair_equal to are template function classes that are derived from the
standard binary function base class. The p_equal to checks for equality of objects pointed to
by a pointer and pair_equal_to checks whether a pair's second element matches a given value.
Another PPtrLess function class allows comparison of objects pointed to by a smart pointer.

The CNameGetter template defines the function GetKey(), which returns the name attribute
for the template parameter.

Template Functions

Defined here are a number of inline template functions that make it easier to perform common
operations on map objects.

NotNull() checks for a null pointer value and throws a CCoreException, if a null value is
detected. If the pointer value is not null, it is simply returned.

GetMapElement() searches a map object for an element and returns the element, if found. If
the element is not found, it returns a default value, which is usually set to 0 (null).

SetMapElement() sets the map element. If the element to be set is null, its existing key is erased.
InsertMapElement() inserts a new map element.

GetMapString() and SetMapString() are similar to the more general GetMapElement() and
SetMapElement(), except that they search a map object for a string. In the case of GetMapString
(), it returns a string, if found, and an empty string ("") if not found.

There are three overloads for the DeleteElements() template function. One overload accepts a
container (list, vector, set, multiset) of pointers and deletes all elements in the container and
clears the container afterwards. The other overloads work with map and multimap objects. In
each case, they delete the pointers in the map object and clear the map container afterwards.

The AutoMap() template function works with a cache pointed to auto_ptr. It retrieves the result
from the cache, and if the cache is empty, it inserts a value into the cache from a specified
source.

A FindBestChoice() template function is defined that returns the best choice (lowest score)
value in the container. The container and scoring functions are specified as template
parameters. The FindBestChoice() in turn uses the CBestChoiceTracker template class, which
uses the standard unary_function as its base class. The CBestChoiceTracker contains the logic
to record the scoring function and keep track of the current value and the best score.

Miscellaneous Types and Macros

The ncbimisc.hpp file defines a number of useful enumeration types and macros that are used
in other parts of the library.

The following topics are discussed in this section:
+ Miscellaneous Enumeration Types
+ AutoPtr Class
+ ITERATE Macros

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 84

* Sequence Position Types

Miscellaneous Enumeration Types

The enum type EOwnership defines the constants eNoOwnership and eTakeOwnership. These
are used to specify relationships between objects.

The enum type ENullable defines the constants eNullable and eNotNullable. These are used
to specify if a data element can hold a null or not-null value.

AutoPtr Class

The ncbimisc.hpp file defines an auto_ptr class if the HAVE NO_AUTO_PTR macro is
undefined. This is useful in replacing the std::auto ptr of STL for compilers with poor
"auto_ptr" implementation. Section STL auto_ptrs discusses details on the use of auto_ptr.

Another class related to the auto_ptr class is the AutoPtr class. The Standard auto_ptr class
from STL does not allow the auto_ptr to be put in STL containers such as list, vector, map etc.
Because of the nature of how ownership works in an auto_ptr class, the copy constructor and
assignment operator of AutoPtr modify the state of the source AutoPtr object as it transfers
ownership to the target AutoPtr object.

A certain amount of flexibility has been provided in terms of how the pointer is to be deleted.
This is done by passing a second argument to the AutoPtr template. This second argument
allows the passing of a functor object that defines the deletion of the object. You can define
"malloc" pointers in AutoPtr, or you can use an ArrayDeleter template class to properly delete
an array of objects using "delete[]". By default, the internal pointer will be deleted using the
"delete" operator.

ITERATE macros

When working with STL (or STL-like) container classes, it is common to use a for-statement
to iterate through the elements in a container, for example:

for (Type::const iterator it = cont.begin(); it != cont.end(); ++it)

However, there are a number of ways that iterating in this way can fail. For example, suppose
the function GetNames() returns a vector of strings by value and is used like this:

for (vector<string>::iterator it = GetNames () .begin(); it != GetNames () .end

(); ++it)

This code has the serious problem that the termination condition will never be met because
every time GetNames() is called a new object is created, and therefore neither the initial iterator
returned by begin() nor the iterator returned by operator++() will ever match the iterator
returned by end(). Code like this is not common but does occasionally get written, resulting in
a bug and wasted time.

A simpler criticism of the for-statement approach is that the call to end() is repeated
unnecessarily.

Therefore, to make it easier to write code that will correctly and efficiently iterate through the
elements in STL and STL-like containers, the ITERATE and NON_CONST ITERATE
macros were defined. Using ITERATE , the for-statement at the start of this section becomes
simply:

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 85
ITERATE (Type, it, cont)

Note: The container argument must be an lvalue and may be evaluated more than once, so it
must always evaluate to the same container instance.

ITERATE uses a constant iterator; NON_CONST _ITERATE uses a non-constant iterator.

The ITERATE and NON_CONST ITERATE macros are defined in include/corelib/
ncbimisc.hpp, along with related macros including NON_CONST SET ITERATE,
ERASE ITERATE, VECTOR ERASE, REVERSE ITERATE, ITERATE SIMPLE, and
more.

Sequence Position Types

The TSeqPos and and TSignedSeqPos are defined to specify sequence locations and length.
TSeqPos is defined as an unsigned int, and TSignedSqPos is a signed int that should be used
only when negative values are a possibility for reporting differences between positions, or for
error reporting, although exceptions are generally better for error reporting.

Containers

The Container classes are template classes that provide many useful container types. The
template parameter refers to the types of objects whose collection is being described. An

overview of some of the container classes is presented in the introductory chapter on the C++
Toolkit.

The following classes are described in this section:

« template<typename Coordinate> class CRange

« template<typename Object, typename Coordinate = int> class CRangeMap

+ template<typename Object, typename Coordinate = int> class CRangeMultiMap
* class ClntervalTree

template<typename Coordinate> class CRange

Typedefs

Methods

Class for storing information about some interval (from:to). From and to points are inclusive.

position type

synonym of Coordinate.

CRange () ;
CRange (position type from, position type to);

constructors
static position type GetEmptyFrom();
static position type GetEmptyTo();

static position type GetWholeFrom() ;
static position type GetWholeTo();

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimisc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimisc.hpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

get special coordinate values

static CRange<position type> GetEmpty () ;
static CRange<position type> GetWhole();

get special interval objects

bool HaveEmptyBound() const;

check if any bound have special 'empty' value
bool HavelInfiniteBound() const;

check if any bound have special 'whole' value

bool Empty() const;

Page 86

check if interval is empty (any bound have special 'empty’ value or left bound greater then right

bound)

bool Regular () const;

check if interval's bounds are not special and length is positive
position type GetFrom() const;

position type GetTo() const;

position type GetLength() const;

get parameters of interval

CRange<position_ type>& SetFrom();
CRange<position_ type>& SetTo();

set bounds of interval

CRange<position_ type>& SetLength();

set length of interval leaving left bound (from) unchanged
CRange<position_ type>& SetLengthDown () ;

set length of interval leaving right bound (to) unchanged

bool IntersectingWith (CRange<position type> range) const;
check if non empty intervals intersect

bool IntersectingWithPossiblyEmpty (CRange<position_ type> range)

check if intervals intersect

Portability, Core Functionality and Application Framework

const;

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 87

template<typename Object, typename Coordinate = int> class CRangeMap

Class for storing and retrieving data using interval as key. Also allows efficient iteration over
intervals intersecting with specified interval. Time of iteration is proportional to amount of
intervals produced by iterator. In some cases, algorithm is not so efficient and may slowdown.

template<typename Object, typename Coordinate = int> class CRangeMultiMap

Almost the same as CRangeMap but allows several values have the same key interval.

class CintervalTree

Class with the same functionality as CRangeMap although with different algorithm. It is faster
and its speed is not affected by type of data but it uses more memory (triple as CRangeMap)
and, as a result, less efficient when amount of interval in set is quite big. It uses about 140 bytes
per interval for 64 bit program so you can calculate if CIntervalTree is acceptable. For example,
it becomes less efficient than CRangeMap when total memory becomes greater than processor
cache.

Thread Pools

CThreadPool is the main class that implements a pool of threads. It executes any tasks derived
from the CThreadPool Task class. The number of threads in pool is controlled by special holder
of this policy: object derived from CThreadPool Controller (default implementation is
CThreadPool Controller PID based on Proportional-Integral-Derivative algorithm). All
threads executing by CThreadPool are the instances of CThreadPool Thread class or its
derivatives.

The following classes are discussed in this section:
+ CThreadPool
* CThreadPool Task
* CThreadPool_Thread
+ CThreadPool_Controller
* CThreadPool_Controller PID

Class CThreadPool

Main class implementing functionality of pool of threads. CThreadPool can be created in 2
ways:

« with minimum and maximum limits on count of simultaneously working threads and
default object controlling the number of threads in pool during CThreadPool lifecycle
(instance of CThreadPool Controller PID);

+ with custom object controlling the number of threads (instance of class derived from
CThreadPool Controller). This object will control among all other the minimum and
maximum limits on count of simultaneously working threads.

Both constructors take additional parameter - maximum number of tasks waiting in the inner
CThreadPool’s queue for their execution. When this limit will be reached next call to AddTask
() will block until some task from queue is executed and there is free room for new task.

CThreadPool has the ability to execute among ordinary tasks some exclusive ones. After call
to RequestExclusiveExecution() all threads in pool will suspend their work (finishing currently
executing tasks) and exclusive task will be executed in the special exclusive thread.

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 88

If there’s necessity to implement some special per-thread logic in CThreadPool then class can
be derived to override virtual method CreateThread() in which some custom object derived
from CThreadPool Thread can be created.

Class CThreadPool_Task

Abstract class derived from CObject, encapsulating task for execution in a CThreadPool. The
pure virtual method EStatus Execute(void) is called when some thread in pool becomes free
and ready to execute this task. The lifetime of the task is controlled inside pool by CRef<>
classes.

Class CThreadPool_Thread

Base class for a thread running inside CThreadPool and executing its tasks. Class can be derived
to implement some per-thread functionality in CThreadPool. For this purpose there are
protected virtual methods Initialize() and Finalize() which are called at the start and finish of
the thread correspondingly. And there are methods GetPool() and GetCurrentTask() for
application needs.

Class CThreadPool_Controller

Abstract base class for implementations of policies of threads creation and deletion inside pool.

Class CThreadPool_Controller_PID

Default object controlling number of threads working in the pool. Implementation is based on
Proportional-Integral-Derivative algorithm for keeping in memory just threads that are
necessary for efficient work.

Miscellaneous Classes

The following classes are discussed in this section. For an overview of these classes see the
Lightweight Strings and the Checksum sections in the introductory chapter on the C++ Toolkit.

» class CTempString

* class CChecksum

class CTempString
Class CTempString implements a light-weight string on top of a storage buffer whose lifetime
management is known and controlled.

CTempString is designed to avoid memory allocation but provide a string interaction interface
congruent with std::basic_string<char>.

As such, CTempString provides a const-only access interface to its underlying storage. Care
has been taken to avoid allocations and other expensive operations wherever possible.

CTempString has constructors from std::string and C-style string, which do not copy the string
data but keep char pointer and string length.This way the construction and destruction are very
efficient.

Take into account, that the character string array kept by CTempString object must remain
valid and unchanged during whole lifetime of the CTempString object.

It's convenient to use the class CTempString as an argument of API functions so that no
allocation or deallocation will take place on of the function call.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObject&d=C
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 89

class CChecksum

Class for CRC32 checksum calculation. It also has methods for adding and checking checkum
line in text files.

Input/Output Utility Classes

This section provides reference information on a number of Input/Output Utility classes. For
an overview of these classes see the Stream Support section in the introductory chapter on the
C++ Toolkit.

« class CIStreamBuffer
+ class COStreamBuffer

« class CByteSource

* class CStreamByteSource

+ class CFStreamByteSource

» class CFileByteSource

+ class CMemoryByteSource
+ class CByteSourceReader

* class CSubSourceCollector

class CIStreamBuffer

Class for additional buffering of standard C++ input streams (sometimes standard C++
iostreams performance quite bad). Uses CByteSource as a data source.

class COStreamBuffer

Class for additional buffering of standard C++ output streams (sometimes standard C++
iostreams performance quite bad).

class CByteSource

Abstract class for abstract source of byte data (file, stream, memory etc).

class CStreamByteSource
CByteSource subclass for reading from C++ istream.

class CFStreamByteSource
CByteSource subclass for reading from C++ ifstream.

class CFileByteSource
CByteSource subclass for reading from named file.

class CMemoryByteSource
CByteSource subclass for reading from memory buffer.

class CByteSourceReader
Abstract class for reading data from CByteSource.

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=ch_intro

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 90

class CSubSourceCollector
Abstract class for obtaining piece of CByteSource as separate source.

Using the C++ Toolkit from a Third Party Application Framework

The NCBI C++ Toolkit includes an API, via corelib/ncbi_toolkit.hpp, that provides an easy
way to initialize the NCBI C++ Toolkit internals to use the Toolkit from other application
frameworks. This is particularly helpful when those frameworks provide their own logging.

To initialize the NCBI C++ Toolkit internal infrastructure use the function:

void NcbiToolkit Init
(int argc,
const TNcbiToolkit XChar* const* argv,
const TNcbiToolkit XChar* const* envp = NULL,
INcbiToolkit LogHandler* log handler = NULL);

where the parameter meanings are:

Parameter | Meaning

argc Argument count [argc in a regular main(argc, argv)].
argv Argument vector [argv in a regular main(argc, argv)].
envp Environment pointer [envp in a regular main(argc, argv, envp)]; a null pointer (the default) corresponds to the standard system array

(environ on most Unix platforms).

log_handler | Handler for diagnostic messages that are emitted by the C++ Toolkit code.

Note: The TNcbiToolkit XChar parameter type is used for compatibility with applications that
use Unicode under Windows.

When your application is finished using the NCBI C++ Toolkit, be sure to release the Toolkit
resources by calling:

void NcbiToolkit Fini (void);

The following program illustrates how to forward the NCBI C++ Toolkit logging to another
application framework:

#include <ncbi pch.hpp>

#include <iostream>

#include <corelib/ncbi toolkit.hpp>
#include <corelib/ncbifile.hpp>

using namespace std;

using namespace ncbi;

class MyLogHandler : public INcbiToolkit LogHandler
{
public:

void Post (const CNcbiToolkit LogMessageé& msg)

{

Portability, Core Functionality and Application Framework

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_toolkit.hpp

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Page 91

// This is where you could pass log messages generated by the

// NCBI C++ Toolkit to another application framework, e.g.:

// some_ framework::ERR POST (msg.Message());

// In this demo, I'll just print out the message.

cout << "Log message from C++ Toolkit:\n" << msg.Message () << endl;
}

}i

int main(int argc,

const TNcbiToolkit XChar* const* argv,

const TNcbiToolkit XChar* const* envp)

{

// Initialize the NCBI C++ Toolkit application framework.
MyLogHandler log handler;

NcbiToolkit Init(argc,argv,envp,&log handler);

// Use a part of the NCBI C++ Toolkit that will cause a log message.
// This will cause MyLogHandler::Post() to get called, where the log
// message can get passed to the third party application framework.
CFileAPI::SetLogging (eOn) ;

CDirEntry baddir (CDirEntry ("<bad>"));

baddir.Stat (0);

// Release resources used by the NCBI C++ Toolkit application framework.

NcbiToolkit Fini();

return 0;

}

Note: This API is in the ncbi namespace.

—

|” Addkeyh \I
) I AddOptionalkieyd |
R Ble | CArgDescriptions: AddFlag0 |
- o -~ AddPlaing
CArgDeschiptions desci f—ﬁ\x” o
des?ripﬁddﬁ(ey("f" "ﬂnatF'l'l Register Argument ~F—~"~_ _ _______ AddBExral /
"0=f=1" eFloat, O Descriptons
(i . SetCanstraintd
: |
SetConstraint{eEqual, 0; Define constraints -::~_—:_—_I CArgDescnptlnns_A”Dwﬂ |
CArgS myArgs = descrip. CreateAras] o
(GetArguments i Create Cargs object 1-- CArgDesciptions: CreateAras(
$ AR o A TR G I -
1 ————— CArgValue:AsDouhled 1
Access argument e X
float f= rmyArgs'T.AsDoubled, ualurgs T——g CArgvalue: AsStringd I
g nlwial 3 | CArgWalue: Aslntegerd I
I‘m;_“ etr. A

Figure 1. Argument processing class relations.

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Parent thread Child thread
I
I
constructor
I
|
|
Run(}---------- .
| |
: Main()
I
Join() :
: Exit(), OnExit
. - . () ()
destructor
|
|
|
Parent thread Child thread
|
|
constructor
|
|
|R s 1
|
: Main()
|
|
Detach() |
: Exit(), OnExit(),
: destructor
Fr——————————=-- %

Figure 2. Thread Life Cycle

Page 92

Parent thread Child thread

I
constructor
:
|
Run() ---------- 1

1

Main()

b e Exit(), OnExit()

Join(), destructor
|

Parent thread Child thread

:
1
constructor
:
I
Run() --------—- 1

|

Main()

e Exit(). OnExit()
|
|

Detach(), destructor
|

Portability, Core Functionality and Application Framework

300g Y001 ++D I9ON 8yl 300g 4001 ++D 190N dyLl

300g Y001 ++D 190N 83Ul

Table 1. Example of Command-line Arguments

Page 93

Command-Line Parameters

File Content

-gi "Integer" (GI id of the Seq-Entry to examine) OPTIONAL ARGUMENTS: -h (Print this
USAGE message; ignore other arguments) -reconstruct (Reconstruct title) -accession (Prepend
accession) -organism (Append organism name)

-gi 10200 -reconstruct -accession -organism

Please note:
File must contain Macintosh-style line breaks.
No extra spaces are allowed after argument ("-accession" and not "-accession ").

Arguments must be followed by an empty terminating line.

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 94

Table 2. Location of configuration files

conf Where to Look for the config File

empty [default] | Compose the config file name from the base application name plus .ini. Also try to strip file extensions, e.g., for the application
named my_app.cgi.exe try subsequently: my_app.cgi.exe.ini, my_app.cgi.ini, my_app.ini. Using these names, search in
directories as described in the "Otherwise" case for non-empty conf (see below).

NULL Do not even try to load the registry at all

non-empty If conf contains a path, then try to load from the config file named conf (only and exactly!). If the path is not fully qualified and

it starts from ../ or ./, then look for the config file starting from the current working dir. Otherwise (only a basename, without
path), the config file will be searched for in the following places (in the order of preference): 1. current work directory; 2. user
home directory; 3. directory defined by environment variable NCBI; 4. system directory; 5. program directory.

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 3. Standard command-line options for the default instance of CArgDescriptions

Flag Description Example

-h Print description of the application's command-line parameters. | theapp -h

-logfile Redirect program's log into the specified file. theapp -logfile theapp log
-conffile | Read the program's configuration data from the specified file. theapp -conffile theapp_cfg

Portability, Core Functionality and Application Framework

Page 95

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Table 4. Filter String Samples

Page 96

Filter Description Matches Non Matches
/corelib Log message » src/corelib/ncbidiag.cpp « src/cgi/cgiapp.cpp
from source : ;
file located in src/corelib/test/test_ncbiexec.cpp
src/corelib or * include/corelib/ncbidiag.hpp
include/corelib
or
subdirectories
/corelib/test Log message » src/corelib/test/test ncbiexec.cpp « src/corelib/nebidiag.cpp
from source . . L
file located in include/corelib/ncbidiag.hpp
src/corelib/test « src/cgi/cgiapp.cpp
or include/
corelib/test or
subdirectories
/corelib/ Log message » src/corelib/ncbidiag.cpp < src/corelib/test/test_ncbiexec.cpp
from source * include/corelib/ncbidiag.hpp + src/cgi/cgiapp.cpp
file located in
src/corelib or
include/corelib
corelib Log message » corelib * CNcbiDiag
with module » corelib::CNcbiDiag « CNcbiDiag::GetModule()
name set to
"corelib" and » corelib::CNcbiDiag::GetModule() . GetModule()
any class or
function name
corelib::CNcbiDiag Log message » corelib::CNcbiDiag « corelib
with module » corelib::CNcbiDiag::GetModule() ¢ CNcbiDiag
name set to
"corelib", class ¢ CNcbiDiag::GetModule()
name set to * GetModule()
"CNcbiDiag"
and any
function name
::CNcbiDiag Log message » corelib::CNcbiDiag « corelib
with class + corelib::CNcbiDiag::GetModule() + GetModule()
name set to
"CNcbiDiag" » CNcbiDiag
and any + CNcbiDiag::GetModule()
module or
function name
? Log message » CNcbiDiag « corelib
with module » CNcbiDiag::GetModule() « corelib::CNcbiDiag
name not set
and any class or * GetModule() . corelib::CNcbiDiag::GetModule()
function name « corelib::CNcbiDiag::GetModule()
corelib::? Log message » corelib « corelib::CNcbiDiag

with module
name set to
"corelib", class
name not set
and any
function name

corelib::GetModule()

corelib::CNcbiDiag::GetModule()
CNcbiDiag::GetModule()
GetModule()

Portability, Core Functionality and Application Framework

300g Y001 ++D 190N 8UL 300g IY[001 ++D 19ON 8UL

300g Y001 ++D 190N 83Ul

Page 97

GetModule() Log message » corelib::GetModule() Corelib
with function * CNcbiDiag::GetModule() corelib::CNcbiDiag
name set to
"GetModule" * GetModule() CNcbiDiag
and any class or
module name

(20.11) Log messages » ErrCode(20,11) ErrCode(20,10)
with error code

E 123,11

20 and subcode rrCode(123,11)
11

(20-80.) Lo